[1] Kumaresan K, Mikhaylik Y, White R E. A mathematical model for a lithium-sulfur cell[J]. Journal of The Electrochemical Society, 2008, 155(8): A576-A582
[2] Ghaznavi M, Chen P. Sensitivity analysis of a mathematical model of lithium-sulfur cells part I: Applied discharge current and cathode conductivity[J]. Journal of Power Sources, 2014, 257: 394-401
[3] Ghaznavi M, Chen P. Sensitivity analysis of a mathematical model of lithium-sulfur cells: Part II: Precipitation reaction kinetics and sulfur content[J]. Journal of Power Sources, 2014, 257: 402-411
[4] Ghaznavi M, Chen P. Analysis of a mathematical model of lithium-sulfur cells Part III: Electrochemical reaction kinetics, transport properties and charging[J]. Electrochimica Acta, 2014, 137: 575-585
[5] Fronczek D N, Bessler W G. Insight into lithium-sulfur batteries: Elementary kinetic modeling and impedance simulation[J]. Journal of Power Sources, 2013, 244: 183-188
[6] Sahapatsombut U, Cheng H, Scott K. Modelling the micro-macro homogeneous cycling behaviour of a lithium-air battery [J]. Journal of Power Sources, 2013, 227: 243-253
[7] Xue K, Nguyen T K, Franco A A. Impact of the cathode microstructure on the discharge performance of lithium air batteries: A multiscale model [J]. Journal of the Electrochemical Society, 2014, 161(8): E3 028-E3 035
[8] Tsaur K C, Pollard R. Precipitation of solids in electrochemical cells[J]. Journal of the Electrochemical Society, 1986, 133(11): 2 296-2 308
[9] Yang Y, Yu G, Cha J, et al. Improving the performance of lithium sulfur batteries by conductive polymer coating [J]. ACS, 2011, 5(11): 9 187-9 193
[10] Mikhaylik Y V, Akridge J R. Low temperature performance of Li/S batteries[J]. Journal of the Electrochemical Society, 2003, 150(3): A306-A311
|