[1] ROUHANI M, KORD S, MIRJAFARY Z. Ga-doped phagraphene as a superior media for sensing of carbon monoxide: A detailed theoretical investigation[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 116: 113710
[2] 柴澍靖, 李静, 白雪芹, 等. 水热法制备SnO2纳米颗粒的CO氧化性能[J]. 化学工业与工程, 2017, 34(5): 19-24 CHAI Shujing, LI Jing, BAI Xueqin, et al. CO oxidation performance over SnO2 nanoparticles prepared with hydrothermal method[J]. Chemical Industry and Engineering, 2017, 34(5): 19-24(in Chinese)
[3] ZHAO Y, HU J, TAN Z, et al. Ambient carbon monoxide and increased risk of daily hospital outpatient visits for respiratory diseases in Dongguan, China[J]. Science of the Total Environment, 2019, 668: 254-260
[4] 刘娅琼, 吕倩, 孟明. 制备参数对Au/TiO2催化剂上CO低温氧化性能的影响[J]. 化学工业与工程, 2013, 30(5): 1-6 LIU Yaqiong, LYU Qian, MENG Ming. Effect of preparation parameters on the CO low-temperature oxidation performance of Au/TiO2 catalysts[J]. Chemical Industry and Engineering, 2013, 30(5): 1-6(in Chinese)
[5] AN N, LI S, DUCHESNE P N, et al. Size effects of platinum colloid particles on the structure and CO oxidation properties of supported Pt/Fe2O3 catalysts[J]. The Journal of Physical Chemistry C, 2013, 117(41): 21254-21262
[6] 金石山, 张大山, 冯旭浩, 等. Ni含量对NiO/CeO2催化剂催化CO氧化性能的影响[J]. 燃料化学学报, 2022, 50(8): 1034-1040 JIN Shishan, ZHANG Dashan, FENG Xuhao, et al. Effect of Ni content on catalytic oxidation of CO over NiO/CeO2 catalyst[J]. Journal of Fuel Chemistry and Technology, 2022, 50(8): 1034-1040(in Chinese)
[7] JIANG Y, ZHANG D, ZHANG C, et al. Preparation of Cu0.1-xNixCe0.9O2-y catalyst by ball milling and its CO catalytic oxidation performance[J]. International Journal of Hydrogen Energy, 2023, 48(33): 12385-12395
[8] HARUTA M, YAMADA N, KOBAYASHI T, et al. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide[J]. Journal of Catalysis, 1989, 115(2): 301-309
[9] HARUTA M, DATÉ M. Advances in the catalysis of Au nanoparticles[J]. Applied Catalysis A: General, 2001, 222(1/2): 427-437
[10] SREETHAWONG T, SUKJIT D, OURAIPRYVAN P, et al. Oxidation of oxygenated volatile organic compound over monometallic and bimetallic Ru-Au catalysts[J]. Catalysis Letters, 2010, 138(3): 160-170
[11] KAMIUCHI N, MITSUI T, MUROYAMA H, et al. Catalytic combustion of ethyl acetate and nano-structural changes of ruthenium catalysts supported on tin oxide[J]. Applied Catalysis B: Environmental, 2010, 97(1/2): 120-126
[12] PARK J N, SHON J K, JIN M, et al. Room-temperature CO oxidation over a highly ordered mesoporous RuO2 catalyst[J]. Reaction Kinetics, Mechanisms and Catalysis, 2011, 103(1): 87-99
[13] CHIN S, ALEXEEV O S, AMIRIDIS M D. Preferential oxidation of CO under excess H2 conditions over Ru catalysts[J]. Applied Catalysis A: General, 2005, 286(2): 157-166
[14] HUANG B, KOBAYASHI H, YAMAMOTO T, et al. A CO adsorption site change induced by copper substitution in a ruthenium catalyst for enhanced CO oxidation activity[J]. Angewandte Chemie (International Ed), 2019, 58(8): 2230-2235
[15] ANIL C, MADRAS G. Catalytic behaviour of Mn2.94M0.06O4-δ (M=Pt, Ru and Pd) catalysts for low temperature water gas shift (WGS) and CO oxidation[J]. International Journal of Hydrogen Energy, 2020, 45(17): 10461-10474
[16] OH S H, SINKEVITCH R M. Carbon monoxide removal from hydrogen-rich fuel cell feedstreams by selective catalytic oxidation[J]. Journal of Catalysis, 1993, 142(1): 254-262
[17] GONZALEZ-A E, RANGEL R, SOLÍS-GARCIA A, et al. FTIR investigation under reaction conditions during CO oxidation over Ru(x)-CeO2 catalysts[J]. Molecular Catalysis, 2020, 493: 111086
[18] WEIHER N, BUS E, DELANNOY L, et al. Structure and oxidation state of gold on different supports under various CO oxidation conditions[J]. Journal of Catalysis, 2006, 240(2): 100-107
[19] LOU Y, LIU J. CO oxidation on metal oxide supported single Pt atoms: The role of the support[J]. Industrial & Engineering Chemistry Research, 2017, 56(24): 6916-6925
[20] LI J, LIU Z, WANG R. Support structure and reduction treatment effects on CO oxidation of SiO2 nanospheres and CeO2 nanorods supported ruthenium catalysts[J]. Journal of Colloid and Interface Science, 2018, 531: 204-215
[21] 卢畅, 张财顺, 刘道胜, 等. CuO-SiO2-CeO2催化剂的设计、制备及性能研究[J]. 石油化工高等学校学报, 2022, 35(1): 29-34 LU Chang, ZHANG Caishun, LIU Daosheng, et al. Design, preparation and performance of CuO-SiO2-CeO2 catalyst[J]. Journal of Petrochemical Universities, 2022, 35(1): 29-34(in Chinese)
[22] XING Y, WU J, ZHANG C, et al. Mn-induced Cu/Ce catalysts with improved performance for CO preferential oxidation in H2/CO2-rich streams[J]. International Journal of Hydrogen Energy, 2023, 48(54): 20667-20679
[23] 杨昕毓, 孙舒, 石岩, 等. 水热时间对CuO/CeO2催化甲醇水蒸气重整制氢的影响[J]. 石油化工高等学校学报, 2023, 36(2): 63-69 YANG Xinyu, SUN Shu, SHI Yan, et al. Effects of hydrothermal reaction time on the performance of CuO/CeO2 catalyst for hydrogen production from steam reforming methanol[J]. Journal of Petrochemical Universities, 2023, 36(2): 63-69(in Chinese)
[24] ZHANG Y. Preparation and characterization of Ru/Al2O3 catalysts by adsorption-precipitation-activation method and selective hydrogenation of dimethyl maleate to dimethyl succinate[J]. Material Science and Engineering with Advanced Research, 2015, 1(1): 31-37
[25] DING Y, WANG Z, GUO Y, et al. A novel method for the synthesis of CexZr1-xO2 solid solution with high purity of κappa phase and excellent reactive activity[J]. Catalysis Today, 2019, 327: 262-270
[26] 李树娜, 石奇, 李小军, 等. 金属掺杂Ce-M(M=Fe、Ni和Cu)催化剂的CO低温氧化性能研究[J]. 燃料化学学报, 2017, 45(6): 707-713 LI Shuna, SHI Qi, LI Xiaojun, et al. Low temperature CO oxidation over the ceria oxide catalysts doped with Fe, Ni and Cu[J]. Journal of Fuel Chemistry and Technology, 2017, 45(6): 707-713(in Chinese)
[27] SHI Z, TAN Q, WU D. Ternary copper-cerium-zirconium mixed metal oxide catalyst for direct CO2 hydrogenation to methanol[J]. Materials Chemistry and Physics, 2018, 219: 263-272
[28] 康玉姝, 王丽宝, 李永志, 等. 水热合成时间对Cu/Ce-Zr催化水气变换反应性能的影响[J]. 燃料化学学报(中英文), 2023, 51(6): 776-782 KANG Yushu, WANG Libao, LI Yongzhi, et al. Effect of hydrothermal synthesis time on the performance of Cu/Ce-Zr catalysts for catalytic water-gas shift reaction[J]. Journal of Fuel Chemistry and Technology, 2023, 51(6): 776-782(in Chinese)
[29] LIU H, WANG Y, JIA A, et al. Oxygen vacancy promoted CO oxidation over Pt/CeO2 catalysts: A reaction at Pt-CeO2 interface[J]. Applied Surface Science, 2014, 314: 725-734
[30] SPEZZATI G, BENAVIDEZ A D, DELARIVA A T, et al. CO oxidation by Pd supported on CeO2(100) and CeO2(111) facets[J]. Applied Catalysis B: Environmental, 2019, 243: 36-46
|