[1] LEE M J, HAN J, LEE K, et al. Elastomeric electrolytes for high-energy solid-state lithium batteries[J]. Nature, 2022, 601(7892): 217-222
[2] YE L, LI X. A dynamic stability design strategy for lithium metal solid state batteries[J]. Nature, 2021, 593(7858): 218-222
[3] WU Y, WANG S, LI H, et al. Progress in thermal stability of all-solid-state-Li-ion-batteries[J]. InfoMat, 2021, 3(8): 827-853
[4] CHANG Z, YANG H, ZHU X, et al. A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments[J]. Nature Communications, 2022, 13(1): 1510
[5] JANEK J, ZEIER W G. Challenges in speeding up solid-state battery development[J]. Nature Energy, 2023, 8: 230-240
[6] HODGE I M, INGRAM M D, WEST A R. Impedance and modulus spectroscopy of polycrystalline solid electrolytes[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1976, 74(2): 125-143
[7] 陈立坤, 胡懿, 马家宾, 等. Li+电池固态聚合物电解质研究进展[J]. 化学工业与工程, 2020, 37(1): 2-16 CHEN Likun, HU Yi, MA Jiabin, et al. Research progress of solid polymer electrolytes for lithium-ion batteries[J]. Chemical Industry and Engineering, 2020, 37(1): 2-16(in Chinese)
[8] LIANG H, WANG L, WANG A, et al. Tailoring practically accessible polymer/inorganic composite electrolytes for all-solid-state lithium metal batteries: A review[J]. Nano-Micro Letters, 2023, 15(1): 42
[9] HOU W, GUO X, SHEN X, et al. Solid electrolytes and interfaces in all-solid-state sodium batteries: Progress and perspective[J]. Nano Energy, 2018, 52: 279-291
[10] LIU M, ZHANG S, VAN ECK E R H, et al. Improving Li-ion interfacial transport in hybrid solid electrolytes[J]. Nature Nanotechnology, 2022, 17(9): 959-967
[11] CHENG Z, LIU T, ZHAO B, et al. Recent advances in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries[J]. Energy Storage Materials, 2021, 34: 388-416
[12] LI J, CAI Y, WU H, et al. Polymers in lithium-ion and lithium metal batteries[J]. Advanced Energy Materials, 2021, 11(15): 2003239
[13] DING P, LIN Z, GUO X, et al. Polymer electrolytes and interfaces in solid-state lithium metal batteries[J]. Materials Today, 2021, 51: 449-474
[14] 刁庆宇, 刘吉源, 王列, 等. 固态电解质离子传输机制研究进展[J]. 化学工业与工程, 2024, 41(1): 71-82 DIAO Qingyu, LIU Jiyuan, WANG Lie, et al. Research progress on ion transport mechanism in solid-state electrolytes[J]. Chemical Industry and Engineering, 2024, 41(1): 71-82(in Chinese)
[15] WU D, CHEN L, LI H, et al. Solid-state lithium batteries-from fundamental research to industrial progress[J]. Progress in Materials Science, 2023, 139: 101182
[16] ZHANG Z, CHEN H, HU Z, et al. Ion conduction path in composite solid electrolytes for lithium metal batteries: From polymer rich to ceramic rich[J]. Frontiers in Energy, 2022, 16(5): 706-733
[17] FENTON D E, PARKER J M, WRIGHT P V. Complexes of alkali metal ions with poly(ethylene oxide)[J]. Polymer, 1973, 14(11): 589
[18] ARMAND M B, CHABAGNO J M, DUCLOT M J. Fast ion transport in solids[J]. Electrodes and Electrolytes, 1979, 131: 2944-2955
[19] SONG Z, CHEN F, MARTINEZ-IBAÑEZ M, et al. A reflection on polymer electrolytes for solid-state lithium metal batteries[J]. Nature Communications, 2023, 14(1): 4884
[20] DIDDENS D, HEUER A, BORODIN O. Understanding the lithium transport within a rouse-based model for a PEO/LiTFSI polymer electrolyte[J]. Macromolecules, 2010, 43(4): 2028-2036
[21] SETHURAMAN V, MOGURAMPELLY S, GANESAN V. Ion transport mechanisms in lamellar phases of salt-doped PS-PEO block copolymer electrolytes[J]. Soft Matter, 2017, 13(42): 7793-7803
[22] SETHURAMAN V, MOGURAMPELLY S, GANESAN V. Multiscale simulations of lamellar PS-PEO block copolymers doped with LiPF6 ions[J]. Macromolecules, 2017, 50(11): 4542-4554
[23] BORODIN O, SMITH G D. Molecular dynamics simulations of poly(ethylene oxide)/LiI melts. 1. Structural and conformational properties[J]. Macromolecules, 1998, 31(23): 8396-8406
[24] ZHANG D, MENG X, HOU W, et al. Solid polymer electrolytes: Ion conduction mechanisms and enhancement strategies[J]. Nano Research Energy, 2023, 2: e9120050
[25] STAUNTON E, ANDREEV Y G, BRUCE P G. Structure and conductivity of the crystalline polymer electrolyte β-PEO6: LiAsF6[J]. Journal of the American Chemical Society, 2005, 127(35): 12176-12177
[26] STOEVA Z, MARTIN-LITAS I, STAUNTON E, et al. Ionic conductivity in the crystalline polymer electrolytes PEO6: LiXF6, X=P, As, Sb[J]. Journal of the American Chemical Society, 2003, 125(15): 4619-4626
[27] LIGHTFOOT P, MEHTA M A, BRUCE P G. Crystal structure of the polymer electrolyte poly(ethylene oxide)3: LiCF3SO3[J]. Science, 1993, 262(5135): 883-885
[28] MARZANTOWICZ M, DYGAS J R, KROK F, et al. In situ microscope and impedance study of polymer electrolytes[J]. Electrochimica Acta, 2006, 51(8/9): 1713-1727
[29] GOLODNITSKY D, STRAUSS E, PELED E, et al. Review—On order and disorder in polymer electrolytes[J]. Journal of the Electrochemical Society, 2015, 162(14): A2551-A2566
[30] DEVAUX D, BOUCHET R, GLÉ D, et al. Mechanism of ion transport in PEO/LiTFSI complexes: Effect of temperature, molecular weight and end groups[J]. Solid State Ionics, 2012, 227: 119-127
[31] ORÄDD G, EDMAN L, FERRY A. Diffusion: A comparison between liquid and solid polymer LiTFSI electrolytes[J]. Solid State Ionics, 2002, 152: 131-136
[32] ZARDALIDIS G, IOANNOU E, PISPAS S, et al. Relating structure, viscoelasticity, and local mobility to conductivity in PEO/LiTf electrolytes[J]. Macromolecules, 2013, 46(7): 2705-2714
[33] XUE Z, HE D, XIE X. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(38): 19218-19253
[34] RATNER M A, SHRIVER D F. Ion transport in solvent-free polymers[J]. Chemical Reviews, 1988, 88(1): 109-124
[35] ROBITAILLE C D, FAUTEUX D. Phase diagrams and conductivity characterization of some PEO-LiX electrolytes[J]. Journal of the Electrochemical Society, 1986, 133(2): 315-325
[36] BALLARD D G H, CHESHIRE P, MANN T S, et al. Ionic conductivity in organic solids derived from amorphous macromolecules[J]. Macromolecules, 1990, 23(5): 1256-1264
[37] GAUTHIER M, FAUTEUX D, VASSORT G, et al. Behavior of polymer electrolyte batteries at 80~100 ℃ and near room temperature[J]. Journal of Power Sources, 1985, 14(1/2/3): 23-26
[38] CHIODELLI G. Ionic conduction and thermal properties of poly (ethylene oxide)-lithium tetrafluoroborate films[J]. Solid State Ionics, 1988, 28/29/30: 1009-1013
[39] FRECH R, CHINTAPALLI S, BRUCE P G, et al. Crystalline and Amorphous Phases in the Poly(ethylene oxide)-LiCF3SO3 System[J]. Macromolecules, 1999, 32(3): 808-813
[40] VALLÉE A, BESNER S, PRUD’HOMME J. Comparative study of poly(ethylene oxide) electrolytes made with LiN(CF3SO2)2, LiCF3SO3 and LiClO4: Thermal properties and conductivity behaviour[J]. Electrochimica Acta, 1992, 37(9): 1579-1583
[41] TAN S, YUE J, TIAN Y, et al. In-situ encapsulating flame-retardant phosphate into robust polymer matrix for safe and stable quasi-solid-state lithium metal batteries[J]. Energy Storage Materials, 2021, 39: 186-193
[42] DONG T, ZHANG J, XU G, et al. A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery[J]. Energy & Environmental Science, 2018, 11(5): 1197-1203
[43] QIAO L, RODRIGUEZ PEÑA S, MARTÍNEZ-IBAÑEZ M, et al. Anion π-π stacking for improved lithium transport in polymer electrolytes[J]. Journal of the American Chemical Society, 2022, 144(22): 9806-9816
[44] CROCE F, APPETECCHI G B, PERSI L, et al. Nanocomposite polymer electrolytes for lithium batteries[J]. Nature, 1998, 394: 456-458
[45] ZHOU Q, MA J, DONG S, et al. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries[J]. Advanced Materials, 2019, 31(50): e1902029
[46] CHEN L, LI Y, LI S, et al. PEO/garnet composite electrolytes for solid-state lithium batteries: From "ceramic-in-polymer" to "polymer-in-ceramic"[J]. Nano Energy, 2018, 46: 176-184
[47] LI Z, HUANG H, ZHU J, et al. Ionic conduction in composite polymer electrolytes: Case of PEO: Ga-LLZO composites[J]. ACS Applied Materials & Interfaces, 2019, 11(1): 784-791
[48] YANG X, LIU J, PEI N, et al. The critical role of fillers in composite polymer electrolytes for lithium battery[J]. Nano-Micro Letters, 2023, 15(1): 74
[49] ZHAO T, ZHENG X, WANG D, et al. A quasi-solid-state polyether electrolyte for low-temperature sodium metal batteries[J]. Advanced Functional Materials, 2023, 33(48): 2304928
[50] YANG H, LIU Z, WANG Y, et al. Multiscale structural gel polymer electrolytes with fast Li+ transport for long-life Li metal batteries[J]. Advanced Functional Materials, 2023, 33(1): 2209837
[51] ZHANG F, SUN Y, WANG Z, et al. Highly conductive polymeric ionic liquid electrolytes for ambient-temperature solid-state lithium batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(21): 23774-23780
[52] YUE Y, ZHENG B, NI J, et al. All-polymer solar cells with 17% efficiency enabled by the "end-capped" ternary strategy[J]. Advanced Science, 2022, 9(32): e2204030
[53] ZHANG Y, WANG Z, PAN Y, et al. Tailoring a multi-system adaptable gel polymer electrolyte for the realization of carbonate ester and ether-based Li-SPAN batteries[J]. Energy & Environmental Science, 2024, 17(7): 2576-2587
[54] LU X, WANG Y, XU X, et al. Polymer-based solid-state electrolytes for high-energy-density lithium-ion batteries-review[J]. Advanced Energy Materials, 2023, 13(38): 2301746
[55] ZHAO Y, BAI Y, LI W, et al. Design strategies for polymer electrolytes with ether and carbonate groups for solid-state lithium metal batteries[J]. Chemistry of Materials, 2020, 32(16): 6811-6830
[56] TOMINAGA Y. Ion-conductive polymer electrolytes based on poly(ethylene carbonate) and its derivatives[J]. Polymer Journal, 2017, 49(3): 291-299
[57] MACKANIC D G, MICHAELS W, LEE M, et al. Crosslinked poly(tetrahydrofuran) as a loosely coordinating polymer electrolyte[J]. Advanced Energy Materials, 2018, 8(25): 1800703
[58] SÅNGELAND C, YOUNESI R, MINDEMARK J, et al. Towards room temperature operation of all-solid-state Na-ion batteries through polyester-polycarbonate-based polymer electrolytes[J]. Energy Storage Materials, 2019, 19: 31-38
[59] WEBB M A, JUNG Y, PESKO D M, et al. Systematic computational and experimental investigation of lithium-ion transport mechanisms in polyester-based polymer electrolytes[J]. ACS Central Science, 2015, 1(4): 198-205
[60] ANGELL C A, LIU C, SANCHEZ E. Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity[J]. Nature, 1993, 362: 137-139
[61] MANUEL STEPHAN A. Review on gel polymer electrolytes for lithium batteries[J]. European Polymer Journal, 2006, 42(1): 21-42
[62] TONG B, SONG Z, WU H, et al. Ion transport and structural design of lithium-ion conductive solid polymer electrolytes: A perspective[J]. Materials Futures, 2022, 1(4): 042103
[63] ANGELL C A. Mobile ions in amorphous solids[J]. Annual Review of Physical Chemistry, 1992, 43: 693-717
[64] FORSYTH M, SUN J, MACFARLANE D R, et al. Compositional dependence of free volume in PAN/LiCF3SO3 polymer-in-salt electrolytes and the effect on ionic conductivity[J]. Journal of Polymer Science Part B: Polymer Physics, 2000, 38(2): 341-350
[65] ANGELL C A. Concepts and conflicts in polymer electrolytes: The search for ion mobility[J]. Electrochimica Acta, 2019, 313: 205-210
[66] CHENG S, SMITH D M, LI C. How does nanoscale crystalline structure affect ion transport in solid polymer electrolytes?[J]. Macromolecules, 2014, 47(12): 3978-3986
[67] LI Z, FU J, ZHOU X, et al. Ionic conduction in polymer-based solid electrolytes[J]. Advanced Science, 2023, 10(10): e2201718
[68] GAO H, GRUNDISH N S, ZHAO Y, et al. Formation of stable interphase of polymer-in-salt electrolyte in all-solid-state lithium batteries[J]. Energy Material Advances, 2020, 2020: 1932952
[69] AZIZ S B, WOO T J, KADIR M F Z, et al. A conceptual review on polymer electrolytes and ion transport models[J]. Journal of Science: Advanced Materials and Devices, 2018, 3(1): 1-17
[70] YANG J, LI R, ZHANG P, et al. Crosslinked polymer-in-salt solid electrolyte with multiple ion transport paths for solid-state lithium metal batteries[J]. Energy Storage Materials, 2024, 64: 103088
[71] HE Z, FAN L. Poly(ethylene carbonate)-based electrolytes with high concentration Li salt for all-solid-state lithium batteries[J]. Rare Metals, 2018, 37(6): 488-496
[72] ZHANG W, KOVERGA V, LIU S, et al. Single-phase local-high-concentration solid polymer electrolytes for lithium-metal batteries[J]. Nature Energy, 2024, 9: 386-400
[73] DIEDERICHSEN K M, MCSHANE E J, MCCLOSKEY B D. Promising routes to a high Li+ transference number electrolyte for lithium ion batteries[J]. ACS Energy Letters, 2017, 2(11): 2563-2575
[74] MA Q, ZHANG H, ZHOU C, et al. Single lithium-ion conducting polymer electrolytes based on a super-delocalized polyanion[J]. Angewandte Chemie (International Ed), 2016, 55(7): 2521-2525
[75] FONG K D, SELF J, DIEDERICHSEN K M, et al. Ion transport and the true transference number in nonaqueous polyelectrolyte solutions for lithium ion batteries[J]. ACS Central Science, 2019, 5(7): 1250-1260
[76] SAVOIE B M, WEBB M A, MILLER T F. Enhancing cation diffusion and suppressing anion diffusion via lewis-acidic polymer electrolytes[J]. The Journal of Physical Chemistry Letters, 2017, 8(3): 641-646
[77] BOUCHET R, MARIA S, MEZIANE R, et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries[J]. Nature Materials, 2013, 12(5): 452-457
[78] GAO J, WANG C, HAN D, et al. Single-ion conducting polymer electrolytes as a key jigsaw piece for next-generation battery applications[J]. Chemical Science, 2021, 12(40): 13248-13272
[79] DOYLE M, FULLER T F, NEWMAN J. The importance of the lithium ion transference number in lithium/polymer cells[J]. Electrochimica Acta, 1994, 39(13): 2073-2081
[80] ZHANG H, LI C, PISZCZ M, et al. Single lithium-ion conducting solid polymer electrolytes: Advances and perspectives[J]. Chemical Society Reviews, 2017, 46(3): 797-815
[81] CHAZALVIEL J. Electrochemical aspects of the generation of ramified metallic electrodeposits[J]. Physical Review A, Atomic, Molecular, and Optical Physics, 1990, 42(12): 7355-7367
[82] BOLINTINEANU D S, STEVENS M J, FRISCHKNECHT A L. Atomistic simulations predict a surprising variety of morphologies in precise ionomers[J]. ACS Macro Letters, 2013, 2(3): 206-210
[83] HALL L M, STEVENS M J, FRISCHKNECHT A L. Dynamics of model ionomer melts of various architectures[J]. Macromolecules, 2012, 45(19): 8097-8108
[84] WANG Y, SUN Q, ZOU J, et al. Simultaneous high ionic conductivity and lithium-ion transference number in single-ion conductor network polymer enabling fast-charging solid-state lithium battery[J]. Small, 2023, 19(43): 2303344
[85] HE D, WANG D, ZOU D, et al. Anion-tethered single lithium-ion conducting polyelectrolytes through UV-induced free radical polymerization for improved morphological stability of lithium metal anodes[J]. Angewandte Chemie, 2023, 135(38): e202308309
[86] LIU J, PICKETT P D, PARK B, et al. Non-solvating, side-chain polymer electrolytes as lithium single-ion conductors: Synthesis and ion transport characterization[J]. Polymer Chemistry, 2020, 11(2): 461-471
[87] HAN S, WEN P, WANG H, et al. Sequencing polymers to enable solid-state lithium batteries[J]. Nature Materials, 2023, 22(12): 1515-1522
[88] LU F, LI G, YU Y, et al. Zwitterionic impetus on single lithium-ion conduction in solid polymer electrolyte for all-solid-state lithium-ion batteries[J]. Chemical Engineering Journal, 2020, 384: 123237
[89] HU J, HE P, ZHANG B, et al. Porous film host-derived 3D composite polymer electrolyte for high-voltage solid state lithium batteries[J]. Energy Storage Materials, 2020, 26: 283-289
[90] WU N, CHIEN P H, LI Y, et al. Fast Li+ conduction mechanism and interfacial chemistry of a NASICON/polymer composite electrolyte[J]. Journal of the American Chemical Society, 2020, 142(5): 2497-2505
[91] BAE J, LI Y, ZHANG J, et al. A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte[J]. Angewandte Chemie, 2018, 130(8): 2118-2122
[92] CHEN H, ADEKOYA D, HENCZ L, et al. Stable seamless interfaces and rapid ionic conductivity of Ca-CeO2/LiTFSI/PEO composite electrolyte for high-rate and high-voltage all-solid-state battery[J]. Advanced Energy Materials, 2020, 10(21): 2000049
[93] LI Q, WANG X, ZHU S, et al. Fast Li-ion conduction enabled by graphite fluoride flakes in solid polymer electrolyte[J]. Rare Metals, 2023, 42(10): 3337-3344
[94] YUAN Y, CHEN L, LI Y, et al. Functional LiTaO3 filler with tandem conductivity and ferroelectricity for PVDF-based composite solid-state electrolyte[J]. Energy Materials and Devices, 2023, 1(1): 9370004
[95] WEN K, XIN C, GUAN S, et al. Ion-dipole interaction regulation enables high-performance single-ion polymer conductors for solid-state batteries[J]. Advanced Materials, 2022, 34(32): e2202143
[96] PENG H, LONG T, PENG J, et al. Molecular design for in-situ polymerized solid polymer electrolytes enabling stable cycling of lithium metal batteries[J]. Advanced Energy Materials, 2024, 14(22): 2400428
[97] YU X, ZHAO L, LI Y, et al. Weakening ionic coordination for high ionic conductivity composite solid electrolytes[J]. ACS Energy Letters, 2024, 9(5): 2109-2115
[98] HOFFKNECHT J P, WETTSTEIN A, ATIK J, et al. Coordinating anions "to the rescue" of the lithium ion mobility in ternary solid polymer electrolytes plasticized with ionic liquids[J]. Advanced Energy Materials, 2023, 13(1): 2202789
[99] WANG C, ZHAO X, LI D, et al. Anion-modulated ion conductor with chain conformational transformation for stabilizing interfacial phase of high-voltage lithium metal batteries[J]. Angewandte Chemie (International Ed), 2024, 63(19): e202317856
[100] XIA Y, ZHOU P, KONG X, et al. Designing an asymmetric ether-like lithium salt to enable fast-cycling high-energy lithium metal batteries[J]. Nature Energy, 2023, 8: 934-945
[101] ZHANG Q, LIU Z, SONG X, et al. Ordered and fast ion transport of quasi-solid-state electrolyte with regulated coordination strength for lithium metal batteries[J]. Angewandte Chemie (International Ed), 2023, 62(30): e202302559
[102] XU L, XIAO X, TU H, et al. Engineering functionalized 2D metal-organic frameworks nanosheets with fast Li+ conduction for advanced solid Li batteries[J]. Advanced Materials, 2023, 35(38): e2303193
[103] LIN W, ZHENG X, MA S, et al. Quasi-solid polymer electrolyte with multiple lithium-ion transport pathways by in situ thermal-initiating polymerization[J]. ACS Applied Materials & Interfaces, 2023, 15(6): 8128-8137
[104] LIU J, WU Z, STADLER F J, et al. High dielectric poly(vinylidene fluoride)-based polymer enables uniform lithium-ion transport in solid-state ionogel electrolytes[J]. Angewandte Chemie International Edition, 2023, 62(26): e202300243
[105] CHEN K, SUN Y, ZHANG X, et al. A self-healing and nonflammable cross-linked network polymer electrolyte with the combination of hydrogen bonds and dynamic disulfide bonds for lithium metal batteries[J]. Energy & Environmental Materials, 2023, 6(4): e12568
[106] GUO D, SHINDE D B, SHIN W, et al. Foldable solid-state batteries enabled by electrolyte mediation in covalent organic frameworks[J]. Advanced Materials, 2022, 34(23): e2201410
[107] LIN Z, GUO X, WANG Z, et al. A wide-temperature superior ionic conductive polymer electrolyte for lithium metal battery[J]. Nano Energy, 2020, 73: 104786
[108] HUANG X, HUANG S, WANG T, et al. Polyether-b-amide based solid electrolytes with well-adhered interface and fast kinetics for ultralow temperature solid-state lithium metal batteries[J]. Advanced Functional Materials, 2023, 33(27): 2300683
|