[1] Kang X, Zhu M. Tailoring the photoluminescence of atomically precise nanoclusters[J]. Chemical Society Reviews, 2019, 48(8):2422-2457
[2] Teixeira I F, Barbosa E C M, Tsang S C, et al. Carbon nitrides and metal nanoparticles:From controlled synthesis to design principles for improved photocatalysis[J]. Chemical Society Reviews, 2018, 47(20):7783-7817
[3] Wang Z, Li C, Domen K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting[J]. Chemical Society Reviews, 2019, 48(7):2109-2125
[4] Zhang B, Sun L. Artificial photosynthesis:Opportunities and challenges of molecular catalysts[J]. Chem Soc Rev, 2019, 48(7):2216-2264
[5] 张彤,孙娟,赵朝成,等. 光催化降解含油污水的研究进展[J]. 石油学报(石油加工), 2019, 35(6):1249-1260 Zhang Tong, Sun Juan, Zhao Chaocheng, et al. Research progress on photocatalytic degradation of oily wastewater[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2019, 35(6):1249-1260(in Chinese)
[6] Yang M, Gao M, Hong M, et al. Visible-to-NIR photon harvesting:Progressive engineering of catalysts for solar-powered environmental purification and fuel production[J]. Advanced Materials, 2018, doi:10.1002/adma. 201870363
[7] Gao X, Feng J, Su D, et al. In-situ exfoliation of porous carbon nitride nanosheets for enhanced hydrogen evolution[J]. Nano Energy, 2019, 59:598-609
[8] Ye M, Zhao Z, Hu Z, et al. 0D/2D heterojunctions of vanadate quantum dots/graphitic carbon nitride nanosheets for enhanced visible-light-driven photocatalysis[J]. Angewandte Chemie, 2017, 56(29):8407-8411
[9] Guo Q, Zhou C, Ma Z, et al. Fundamentals of TiO2 photocatalysis:Concepts, mechanisms, and challenges[J]. Advanced Materials, 2019, doi:10.1002/adma.201901997
[10] 李云秀. TiO2光催化技术在气态污染物降解的应用研究[J]. 江西化工, 2019(5):94-96 Li Yunxiu. Application of TiO2 photocatalytic technology in degradation of gaseous pollutants[J]. Jiangxi Chemical Industry, 2019(5):94-96(in Chinese)
[11] Li A, Zhu W, Li C, et al. Rational design of yolk-shell nanostructures for photocatalysis[J]. Chemical Society Reviews, 2019, 48(7):1874-1907
[12] Achouri F, Corbel S, Balan L, et al. Porous Mn-doped ZnO nanoparticles for enhanced solar and visible light photocatalysis[J]. Materials & Design, 2016, 101:309-316
[13] Liu X, Ye M, Zhang S, et al. Enhanced photocatalytic CO2 valorization over TiO2 hollow microspheres by synergetic surface tailoring and Au decoration[J]. Journal of Materials Chemistry, 2018, 6(47):24245-24255
[14] Yang Y, Zhang Y, Fang Z, et al. Simultaneous realization of enhanced photoactivity and promoted photostability by multilayered MoS2 coating on CdS nanowire structure via compact coating methodology[J]. ACS Applied Materials & Inter-faces, 2017, 9(8):6950-6958
[15] Gao C, Wei T, Zhang Y, et al. A photoresponsive rutile TiO2 heterojunction with enhanced electron-hole separation for high-performance hydrogen evolution[J]. Advanced Materials, 2019, doi:10.1002/adma.201806596
[16] Chen R, Pang S, An H, et al. Charge separation via asymmetric illumination in photocatalytic Cu2O particles[J]. Nature Energy, 2018, 3(8):655-663
[17] Liu J, Li Y, Ke J, et al. Black NiO-TiO2 nanorods for solar photocatalysis:Recognition of electronic structure and reaction mechanism[J]. Applied Catalysis B:Environmental, 2018, 224:705-714
[18] Yao L, Wang W, Wang L, et al. Chemical bath deposition synthesis of TiO2/Cu2O core/shell nanowire arrays with enhanced photoelectrochemical water splitting for H2 evolution and photostability[J]. International Journal of Hydrogen Energy, 2018, 43(33):15907-15917
[19] Jia S, Li X, Zhang B, et al. TiO2/CuS heterostructure nanowire array photoanodes toward water oxidation:The role of CuS[J]. Applied Surface Science, 2019, 463:829-837
[20] Song X, Li W, He D, et al. The "Midas touch" transformation of TiO2 nanowire arrays during visible light photoelectrochemical performance by carbon/nitrogen coimplantation[J]. Advanced Energy Materials, 2018, doi:10.1002/aenm.201800165
[21] Zhang J, Liu J, Zhao W, et al. Facile synthesis of high quality Z-scheme W18O49 nanowire-g-C3N4 photocatalyst for the enhanced visible light-driven photocatalytic hydrogen evolution[J]. Journal of Alloys and Compounds, 2018, 764:1-9
[22] Kim C, Cho K M, Al-Saggaf A, et al. Z-Scheme photocatalytic CO2 conversion on three-dimensional BiVO4/carbon-coated Cu2O nanowire arrays under visible light[J]. ACS Catalysis, 2018, 8(5):4170-4177
[23] Liu J, Ke J, Li Y, et al. Co3O4 quantum dots/TiO2 nanobelt hybrids for highly efficient photocatalytic overall water splitting[J]. Applied Catalysis B:Environmental, 2018, 236:396-403
[24] Yu X, Li W, Li Z, et al. Defect engineered Ta2O5 nanorod:One-pot synthesis, visible-light driven hydrogen generation and mechanism[J]. Applied Catalysis B:Environmental, 2017, 217:48-56
[25] Fu J, Zhu B, Jiang C, et al. Hierarchical porous O-doped g-C3N4 with enhanced photocatalytic CO2 reduction activity[J]. Small, 2017, doi:10.1002/smll.201603938
[26] Martínez L, Soler L, Angurell I, et al. Effect of TiO2 nanoshape on the photoproduction of hydrogen from water-ethanol mixtures over Au3Cu/TiO2 prepared with preformed Au-Cu alloy nanoparticles[J]. Applied Catalysis B:Environmental, 2019, 248:504-514
[27] Liu C, Wang F, Zhang J, et al. Efficient photoelectrochemical water splitting by g-C3N4/TiO2 nanotube array heterostructures[J]. Nano-Micro Letters, 2018, doi:10.1007/s40820-018-0192-6
[28] Zhu Y, Wan T, Wen X, et al. Tunable type I and II heterojunction of CoOx nanoparticles confined in g-C3N4 nanotubes for photocatalytic hydrogen production[J]. Applied Catalysis B:Environmental, 2019, 244:814-822
[29] Cai J, Huang J, Wang S, et al. Crafting mussel-inspired metal nanoparticle-decorated ultrathin graphitic carbon nitride for the degradation of chemical pollutants and production of chemical resources[J]. Advanced Materials, 2019, doi:10.1002/adma.201970110
[30] Miao L, Nie Q, Wang J, et al. Ultrathin MnO2 nanosheets for optimized hydrogen evolution via formaldehyde reforming in water at room temperature[J]. Applied Catalysis B:Environmental, 2019, 248:466-476
[31] Bellardita M, García-López E I, Marcì G, et al. Selective photocatalytic oxidation of aromatic alcohols in water by using P-doped g-C3N4[J]. Applied Catalysis B:Environmental, 2018, 220:222-233
[32] Duan W, Zhang P, Xiahou Y, et al. Regulating surface facets of metallic aerogel electrocatalysts by size-dependent localized Ostwald ripening[J]. ACS Applied Materials & Interfaces, 2018, 10(27):23081-23093
[33] Li C, Paineau E, Brisset F, et al. Photonic titanium dioxide film obtained from hard template with chiral nematic structure for environmental application[J]. Catalysis Today, 2019, 335:409-417
[34] Yang X, Liang T, Sun J, et al. Template-Directed synthesis of photocatalyst-encapsulating metal-organic frameworks with boosted photocatalytic activity[J]. ACS Catalysis, 2019, 9(8):7486-7493
[35] Liu H, Chen Z, Zhou L, et al. Interfacial charge field in hierarchical yolk-shell nanocapsule enables efficient immobilization and catalysis of polysulfides conversion[J]. Advanced Energy Materials, 2019, doi:10. 1002/aenm.201901667
[36] Douliez J, Perro A, Chapel J, et al. Preparation of template-free robust yolk-shell gelled particles from controllably evolved all-in-water emulsions[J]. Small, 2018, doi:10.1002/smll.201803042
[37] Wang B, Yu Q, Zhang S, et al. Gas sensing with yolk-shell LaFeO3 microspheres prepared by facile hydrothermal synthesis[J]. Sensors and Actuators B:Chemical, 2018, 258:1215-1222
[38] Feng J, Liu J, Cheng X, et al. Hydrothermal cation exchange enabled gradual evolution of Au@ZnS-AgAuS yolk-shell nanocrystals and their visible light photocatalytic applications[J]. Advanced Science, 2018, doi:10.1002/advs.201700376
[39] Chen Z, Wang J, Zhai G, et al. Hierarchical yolk-shell WO3 microspheres with highly enhanced photoactivity for selective alcohol oxidations[J]. Applied Catalysis B:Environmental, 2017, 218:825-832
[40] Yuan W, Zhang Z, Cui X, et al. Fabrication of hollow mesoporous CdS@TiO2@Au microspheres with high photocatalytic activity for hydrogen evolution from water under visible light[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11):13766-13777
[41] Yu L, Yu X, Lou X. The design and synthesis of hollow micro-/nanostructures:Present and future trends[J]. Advanced Materials, 2018, doi:10.1002/adma.201800939
[42] Yue S, Wang S, Jiao Q, et al. Preparation of yolk-shell-structured CoxFe1-xP with enhanced OER performance[J]. Chemsuschem, 2019, 12(19):4461-4470
[43] Waqas M, Iqbal S, Bahadur A, et al. Designing of a spatially separated hetero-junction pseudobrookite (Fe2TiO5-TiO2) yolk-shell hollow spheres as efficient photocatalyst for water oxidation reaction[J]. Applied Catalysis B:Environmental, 2017, 219:30-35
[44] Mei G, Liang H, Wei B, et al. Bimetallic MnCo selenide yolk shell structures for efficient overall water splitting[J]. Electrochimica Acta, 2018, 290:82-89
[45] Zhao J, Li W, Fan L, et al. Yolk-Porous shell nano-spheres from silver-decorated titanium dioxide and silicon dioxide as an enhanced visible-light photocatalyst with guaranteed shielding for organic carrier[J]. Journal of Colloid and Interface Science, 2019, 534:480-489
[46] Ma M, Yang Y, Li W, et al. Synthesis of yolk-shell structure Fe3O4/P(MAA-MBAA)-PPy/Au/void/TiO2 magnetic microspheres as visible light active photocatalyst for degradation of organic pollutants[J]. Journal of Alloys and Compounds, 2019, doi:10.1016/j.jallcom.2019.151807
[47] Wan H, Yao W, Zhu W, et al. Fe-N co-doped SiO2@TiO2 yolk-shell hollow nanospheres with enhanced visible light photocatalytic degradation[J]. Applied Surface Science, 2018, 444:355-363
[48] Ding S, Liu X, Shi Y, et al. Generalized synthesis of ternary sulfide hollow structures with enhanced photocatalytic performance for degradation and hydrogen evolution[J]. ACS Applied Materials & Interfaces, 2018, 10(21):17911-17922
[49] Zhang P, Yu L, Lou X. Construction of heterostructured Fe2O3-TiO2 microdumbbells for photoelectrochemical water oxidation[J]. Angewandte Chemie International Edition, 2018, 57(46):15076-15080
[50] Yang G, Ding H, Chen D, et al. Construction of urchin-like ZnIn2S4-Au-TiO2 heterostructure with enhanced activity for photocatalytic hydrogen evolution[J]. Applied Catalysis B:Environmental, 2018, 234:260-267
[51] Wu M, Li L, Xue Y, et al. Fabrication of ternary GO/g-C3N4/MoS2 flower-like heterojunctions with enhanced photocatalytic activity for water remediation[J]. Applied Catalysis B:Environmental, 2018, 228:103-112
[52] Chen X, Shi R, Chen Q, et al. Three-Dimensional porous g-C3N4 for highly efficient photocatalytic overall water splitting[J]. Nano Energy, 2019, 59:644-650
[53] Wang Y, Yang W, Chen X, et al. Photocatalytic activity enhancement of core-shell structure g-C3N4@TiO2 via controlled ultrathin g-C3N4 layer[J]. Applied Catalysis B:Environmental, 2018, 220:337-347
[54] Wang L, Wan J, Zhao Y, et al. Hollow multi-shelled structures of Co3O4 dodecahedron with unique crystal orientation for enhanced photocatalytic CO2 reduction[J]. Journal of the American Chemical Society, 2019, doi:10.1021/jacs.8b13528
[55] Zeng Y, Li H, Luo J, et al. Sea-Urchin-Structure g-C3N4 with narrow bandgap (-2.0 eV) for efficient overall water splitting under visible light irradiation[J]. Applied Catalysis B:Environmental, 2019, 249:275-281
|