[1] GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: A perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176
[2] SUN Y, MYUNG S T, PARK B C, et al. High-energy cathode material for long-life and safe lithium batteries[J]. Nature Materials, 2009, 8(4): 320-324
[3] XU G, LIU Q, LAU K K S, et al. Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes[J]. Nature Energy, 2019, 4: 484-494
[4] HU G, SHI Y, FAN J, et al. Sb doping and Sb2O3 coating collaboration to improve the electrochemical performance of LiNi0.5Mn0.5O2 cathode material for lithium ion batteries[J]. Electrochimica Acta, 2020, 364: 137127
[5] OLIVETTI E A, CEDER G, GAUSTAD G G, et al. Lithium-ion battery supply chain considerations: Analysis of potential bottlenecks in critical metals[J]. Joule, 2017, 1(2): 229-243
[6] CROY J R, LONG B R, BALASUBRAMANIAN M. A path toward cobalt-free lithium-ion cathodes[J]. Journal of Power Sources, 2019, 440: 227113
[7] SHI J, XIAO D, GE M, et al. High-capacity cathode material with high voltage for Li-ion batteries[J]. Advanced Materials, 2018, 30(9): 1705575
[8] ZHENG J, KAN W, MANTHIRAM A. Role of Mn content on the electrochemical properties of nickel-rich layered LiNi(0.8-x)Co(0.1)Mn(0.1+x)O2 (0.0≤x≤0.08) cathodes for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(12): 6926-6934
[9] YAN P, ZHENG J, LIU J, et al. Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries[J]. Nature Energy, 2018, 3: 600-605
[10] XIE Q, LI W, MANTHIRAM A. A Mg-doped high-nickel layered oxide cathode enabling safer, high-energy-density Li-ion batteries[J]. Chemistry of Materials, 2019, 31(3): 938-946
[11] 李之锋, 罗垂意, 王春香, 等. 无钴镍基正极材料LiNi0.7Mn0.3O2氟掺杂改性研究[J]. 材料导报, 2018, 32(14): 2329-2334, 2339 LI Zhifeng, LUO Chuiyi, WANG Chunxiang, et al. Synthesis and property of F-doped LiNi0.7Mn0.3O2 cobalt-free nickel-rich cathode material for Li-ion battery[J]. Materials Review, 2018, 32(14): 2329-2334, 2339(in Chinese)
[12] 吕庆文, 尹从岭, 彭弯弯, et al. LiNi0.9Mn0.1O2正极材料掺杂ZrO2改性研究[J]. 电源技术, 2018, 42(11): 1593-1597 LV Qingwen, YIN Congling, PENG Wanwan, et al. LiNi0.9Mn0.1O2 positive electrode material doped with ZrO2 Modification study [J] Power supply technology, 2018, 42 (11): 1593-1597(in chinese)
[13] 王楚, 李灵均, 曾爱香, 等. 铝掺杂对高镍无钴LiNi0.95Mn0.05O2正极材料结构与性能的影响[J]. 矿冶工程, 2022, 42(4): 150-154 WANG Chu, LI Lingjun, ZENG Aixiang, et al. Effect of Al-doping on structure and performance of LiNi0.95Mn0.05O2 cathode material[J]. Mining and Metallurgical Engineering, 2022, 42(4): 150-154(in Chinese)
[14] LEVARTOVSKY Y, CHAKRABORTY A, KUNNIKURUVAN S, et al. Enhancement of structural, electrochemical, and thermal properties of high-energy density Ni-rich LiNi0.85Co0.1Mn0.05O2 cathode materials for Li-ion batteries by niobium doping[J]. ACS Applied Materials & Interfaces, 2021, 13(29): 34145-34156
[15] YANG Z, XIANG W, WU Z, et al. Effect of niobium doping on the structure and electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium ion batteries[J]. Ceramics International, 2017, 43(4): 3866-3872
[16] CAO Y, WANG L, YANG X, et al. Enabling high-rate discharge capability and stable cycling for Ni-rich layered cathodes via multi-functional modification strategy[J]. Electrochimica Acta, 2023, 440: 141763
[17] 黄丽颖, 陆冬楚, 宁玉雪, 等. 锂离子电池正极材料铌掺杂LiNiO2的制备与电化学性能[J]. 无机盐工业, 2022, 54(11): 52-58 HUANG Liying, LU Dongchu, NING Yuxue, et al. Preparation and electrochemical performance of Nb-doped LiNiO2 cathode material for lithium-ion batteries[J]. Inorganic Chemicals Industry, 2022, 54(11): 52-58(in Chinese)
[18] DAI P, KONG X, YANG H, et al. Single-crystal Ni-rich layered LiNi0.9Mn0.1O2 enables superior performance of co-free cathodes for lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(14): 4381-4390
[19] ZHANG S, GAO P, WANG Y, et al. Cobalt-free concentration-gradient Li[Ni0.9Mn0.1]O2 cathode material for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2021, 885: 161005
[20] TENG T, XIAO L, ZHENG J, et al. High-Ni layered LiNi0.83Co0.11Mn0.06O2 modified by Nb for Li-ion batteries[J]. Ceramics International, 2022, 48(6): 8680-8688
[21] TOBY B H. EXPGUI, a graphical user interface for GSAS[J]. Journal of Applied Crystallography, 2001, 34(2): 210-213
[22] LI J, LI J, YU T, et al. Stabilizing the structure and suppressing the voltage decay of Li[Li0.2Mn0.54Co0.13Ni0.13]O2 cathode materials for Li-ion batteries via multifunctional Pr oxide surface modification[J]. Ceramics International, 2016, 42(16): 18620-18630
[23] LI Q, LI G, FU C, et al. K+-doped Li1.2Mn0.54Co0.13Ni0.13O2: A novel cathode material with an enhanced cycling stability for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(13): 10330-10341
[24] LU C, YANG S, WU H, et al. Enhanced electrochemical performance of Li-rich Li1.2Mn0.52Co0.08Ni0.2O2 cathode materials for Li-ion batteries by vanadium doping[J]. Electrochimica Acta, 2016, 209: 448-455
[25] AUFRAY M, MENUEL S, FORT Y, et al. New synthesis of nanosized niobium oxides and lithium niobate particles and their characterization by XPS analysis[J]. Journal of Nanoscience and Nanotechnology, 2009, 9(8): 4780-4785
[26] MURUGANANTHAM R, SIVAKUMAR M, SUBADEVI R. Polyol technique synthesis of Nb2O5 coated on LiFePO4 cathode materials for Li-ion storage[J]. Ionics, 2018, 24(4): 989-999
[27] ZHANG W, XIAO L, ZHENG J, et al. Effect of Nb2O5 nanocoating on the thermal stability and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials for lithium ion batteries[J]. Journal of Alloys and Compounds, 2021, 880: 160415
[28] ZHANG B, CHENG L, DENG P, et al. Effects of transition metal doping on electrochemical properties of single-crystalline LiNi0.7Co0.1Mn0.2O2 cathode materials for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2021, 872: 159619
[29] CHEN Y, TANG S, DENG S, et al. Chemical coupling constructs amorphous silica modified LiNi0.6Co0.2Mn0.2O2 cathode materials and its electrochemical performances[J]. Journal of Power Sources, 2019, 431: 8-16
[30] FU J, MU D, WU B, et al. Electrochemical properties of the LiNi0.6Co0.2Mn0.2O2 cathode material modified by lithium tungstate under high voltage[J]. ACS Applied Materials & Interfaces, 2018, 10(23): 19704-19711
[31] CHEN C, HUANG Y, AN C, et al. Copper-doped dual phase Li4Ti5O12-TiO2 nanosheets as high-rate and long cycle life anodes for high-power lithium-ion batteries[J]. ChemSusChem, 2015, 8(1): 114-122
[32] HOU A, LIU Y, MA L, et al. Novel concentration gradient LiNi0.815Co0.15Al0.035O2 microspheres as cathode material for lithium ion batteries[J]. Ceramics International, 2019, 45(15): 19420-19428
[33] RUI X, DING N, LIU J, et al. Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material[J]. Electrochimica Acta, 2010, 55(7): 2384-2390
|