[1] 刘晋,徐俊毅,林月,等. 全固态锂离子电池的研究及产业化前景[J]. 化学学报, 71: 869-878 Liu Jin, Xu Junyi, Lin Yue, et al. All-Solid-State lithium ion battery: Research and industrial prospects[J]. Acta Chimical Sinica, 71: 869-878(in Chinese)
[2] 李杨, 连芳, 周国治. 应用于锂离子电池的无机晶态固体电解质导电性能研究进展[J]. 硅酸盐学报, 2013, 41(7): 950-958 Li Yang, Lian Fang, Zhou Guozhi. Conductive performance of inorganic crystalline solid electrolytes used in lithium ion batteries-a short review[J]. Journal of the Chinese Ceramic Society, 2013, 41(7): 950-958(in Chinese)
[3] 张舒,王少飞,凌世刚,等. 锂离子电池基础科学问题(X)——全固态锂离子电池[J]. 储能科学与技术,2014,3(4): 376-394 Zhang Shu, Wang Shaofei, Ling Shigang, et al. Fundamental scientific aspects of lithium ion batteries(X)—All-solid-state lithium-ion batteries[J]. Energy Storage Science and Technology, 2014, 3(4): 376-394(in Chinese)
[4] Takada K. Progress and prospective of solid-state lithium batteries[J]. Acta Materialia, 2013, 61: 759-770
[5] Ohtomo T, Hayashi A, Tatsumisago M, et al. All-Solid-State lithium secondary batteries using the 75Li2S·25P2S5 glass and the 70Li2S·30P2S5 glass-ceramic as solid electrolytes[J]. Journal of Power Sources, 2013, 233: 231-235
[6] Kanno R, Murayama M. Lithium ionic conductor thio-LISICON[J]. Journal of the Electrochemical Society, 2001, 148(7): A742-A746
[7] Yang J, Huang Z, Huang B, et al. Influence of phosphorus sources on lithium ion conducting performance in the system of Li2O-Al2O3-GeO2-P2O5 glass-ceramics[J]. Solid State Ionics, 2015, 270: 61-65
[8] Wang Y, Liu Z, Zhu X, et al. Highly lithoum-ion conductive thio-LISICON thin film processed by low-temperature solution method[J]. Journal of Power Sources, 2013, 224: 225-229
[9] Hayashi A, Hama S, Morimoto H, et al, Preparation of Li2S-P2S5 amorphous solid electrolytes by mechanical milling[J]. Journal of the American Ceramic Society, 2001, 84(2): 477-479
[10] Hayashi A, Yamashita H, Tatsumisago M, et al. Characterization of Li2S-SiS2-LixMOy (M=Si, P, Ge) amorphous solid electrolytes prepared by melt-quenching and mechanical milling[J]. Solid State Ionics, 2002, 148: 381-389
[11] Knauth P. Ionic solid Li ion conductors: An overview[J]. Solid state Ionics, 2009, 180: 911-916
[12] Kim J, Yoon Y, Lee J, et al. Formation of high lithium ion conducting phase mechanically milled amorphous Li2S-P2S5 system[J]. Journal of Power Sources, 2011, 196: 6 920-6 923
[13] Tatsumisago M, Hayashi A. Superionic glasses and glass-ceramics in the Li2S-P2S5 system for all-solid-state lithium secondary batteries[J]. Solid State Ionics, 2012, 225: 342-345
[14] Ong S P, Mo Y F, Richards W D. Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12 (M=Ge, Si, Sn, Al or P, and X=O, S, or Se) family of superionic conductor[J]. Energy & Environmental Science, 2013, 6: 148-156
[15] Minami K, Hayashi A, Tatsumisago M. Preparation and characterization of lithium ion conducting Li2S-P2S5-GeS2 glasses and glass-ceramics[J]. Journal of Non-Crystalline Solids, 2010, 356: 2 666-2 669
[16] Trevey J E, Jung Y S, Lee S H. Preparation of Li2S-GeS2-P2S5 electrolyte by a single step ball milling for all-solid-state lithium secondary batteries[J]. Journal of Power Sources, 2010, 195: 4 984-4 989
[17] Minami K, Hayashi A, Ujiie S, et al. Electrical and electrochemical properties of glass-ceramic electrolytes in the systems Li2S-P2S5-P2S3 and Li2S-P2S5-P2O5[J]. Solid State Ionics, 2011, 192: 122-125
[18] Ooura Y, Machida N, Uehara T, et al. A new lithium-ion conducting glass ceramic in the composition of 75Li2S-5P2S3-20P2O5(mol% )[J]. Solid State Ionics, 2014, 262: 733-737
[19] Ooura Y, Machida N, Naito M, et al. Electrochemical properties of amorphous solid electrolytes in the system Li2S-Al2S3-P2S5[J]. Solid State Ionics, 2012, 225: 350-353
[20] Ujiie S, Hayashi A, Tatsumisago M. Structure, ionic conductivity and electrochemical stability of Li2S-P2S5-LiI glass and glass-ceramic electrolyte[J]. Solid State Ionics, 2012, 211: 42-45
[21] Ujiie S, Hayashi A, Tatsumisago M. Preparation and ionic conductivity of (100-x)(0.8Li2S·0.2P2S5)·xLiI glass-ceramic electrolytes[J]. Journal of Solid State Electrochemistry, 2013, 17: 675-680
[22] Ujiie S, Hayashi A, Tatsumisago M. Preparation and electrochemical characterization of (100-x)(0.7Li2S·0.3P2S5)·xLiBr glass-ceramic electrolytes[J]. Materials Renewable and Sustainable Energy, 2013, 3(1):1-8
[23] Ujiie S, Inagaki T, Hayashi A. Conductivity of 70Li2S-30P2S5 glass and glass-ceramics added with lithium halides[J]. Solid State Ionics, 2014, 263: 57-61
[24] Yamauchi A, Sakuda A, Hayashi A, et al. Preparation and ionic conductivities of (100-x)(0.75LiS·0.25P2S5)·LiBH4 glass electrolytes[J]. Journal of Power Sources, 2013, 244: 707-710
[25] Liu Z Q, Tang Y F, Wang Y M, et al. High performance Li2S-P2S5 solid electrolyte induced by selenide[J]. Journal of Power Sources, 2014, 260: 264-267
[26] Muramatsu H, Hayashi A, Ohtomo T, et al. Structure changes of Li2S-P2S5 sulfide electrolytes in the atmosphere[J]. Solid State Ionics, 2011, 182: 116-119
[27] Ohtomo T, Hayashi A, Tatsumisago M, et al. Suppression of H2S gas generation from 75Li2S·25P2S5[J]. Journal of Materials Science, 2013, 48: 4 137-4 142
[28] Hayashi A, Muramatsu H, Ohtomo T, et al. Improvement of chemical stability of Li3PS4 glass electrolytes by adding MxOy(M=Fe, Zn, and Bi) nanoparticles[J]. Journal of Materials Chemistry A, 2013, 1: 6 320-6 326
[29] Ohtomo T, Hayashi A, Tatsumisago M, et al. Characteristics of the Li2O-Li2S-P2S5 glasses synthesized by the two-step mechanical milling[J]. Journal of Non-Crystalline Solids, 2013, 364: 57-61
[30] Hayashi A, Muramatsu H, Ohtomo T, et al. Improved chemical stability in Li2S-P2S5-P2O5-ZnO composite electrolytes for all-solid-state rechargeable lithium batteries[J]. Journal of Alloys and Compounds, 2014, 591: 247-250
[31] Ohtomo T, Hayashi A, Tatsumisago M, et al. Glass electrolytes with high ion conductivity and high chemical stability in the system LiI-Li2O-Li2S-P2O5[J]. Electrochemistry, 2013, 81(6): 428-431
[32] Ohtomo T, Hayashi A, Tatsumisago M, et al. All-Solid-State batteries with Li2O-Li2S-P2S5 glass electrolytes synthesized by two-step mechanical milling[J]. Journal of Solid State Electrochemistry, 2013, 17: 2 551-2 557
|