[1] KIM T, SONG W, SON D Y, et al. Lithium-ion batteries: Outlook on present, future, and hybridized technologies[J]. Journal of Materials Chemistry A, 2019, 7(7): 2942-2964
[2] 董浩,王影,鲁春驰,等.一步法制备钛酸锂复合电极及其性能研究[J].化学工业与工程,2024,41(3):154-160 DONG Hao, WANG Ying, LU Chunchi, et al. Preparation and properties of lithium titanate composite electrode by one-step method[J]. Chemical Industry and Engineering, 2024,41(3): 154-160
[3] WHITTINGHAM M S. Lithium batteries: 50 years of advances to address the next 20 years of climate issues[J]. Nano Letters, 2020, 20(12): 8435-8437
[4] LUO F, LIU B, ZHENG J, et al. Review—Nano-silicon/carbon composite anode materials towards practical application for next generation Li-ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(14): A2509-A2528
[5] ZHANG J, CHEN Y, CHEN X, et al. Preparation of graphene-like carbon attached porous silicon anode by magnesiothermic and nickel-catalyzed reduction reactions[J]. Ionics, 2020, 26(12): 5941-5950
[6] KWON H J, HWANG J Y, SHIN H J, et al. Nano/microstructured silicon-carbon hybrid composite particles fabricated with corn starch biowaste as anode materials for Li-ion batteries[J]. Nano Letters, 2020, 20(1): 625-635
[7] ZHANG L, AL-MAMUN M, WANG L, et al. The typical structural evolution of silicon anode[J]. Cell Reports Physical Science, 2022, 3: 100811
[8] WANG J, GAO C, YANG Z, et al. Carbon-coated mesoporous silicon shell-encapsulated silicon nano-grains for high performance lithium-ion batteries anode[J]. Carbon, 2022, 192: 277-284
[9] WANG F, LIN S, LU X, et al. Poly-dopamine carbon-coated stable silicon/graphene/CNT composite as anode for lithium ion batteries[J]. Electrochimica Acta, 2022, 404: 139708
[10] WU H, CUI Y. Designing nanostructured Si anodes for high energy lithium ion batteries[J]. Nano Today, 2012, 7(5): 414-429
[11] 刘园园,谢海妹,亢一澜,等. 锂离子电池硅/热解聚苯胺复合负极材料的研究[J]. 化学工业与工程, 2018, 35(5): 28-34 LIU Yuanyuan, XIE Haimei, KANG Yilan, et al. Study of Si/p-PANI anode materials for lithium ion batteries[J]. Chemical Industry and Engineering, 2018, 35(5): 28-34
[12] CUI Y. Silicon anodes[J]. Nature Energy, 2021, 6: 995-996
[13] LI H, LI X, WANG D, et al. Scalable synthesis of silicon nanoplate-decorated graphite for advanced lithium-ion battery anodes[J]. Nanoscale, 2021, 13(5): 2820-2824
[14] HUANG P, LIU B, ZHANG J, et al. Silicon/carbon composites based on natural microcrystalline graphite as anode for lithium-ion batteries[J]. Ionics, 2021, 27(5): 1957-1966
[15] LIMTHONGKUL P, JANG Y I, DUDNEY N J, et al. Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage[J]. Acta Materialia, 2003, 51(4): 1103-1113
[16] ZHANG X, WANG Y, MIN B, et al. A controllable and byproduct-free synthesis method of carbon-coated silicon nanoparticles by induction thermal plasma for lithium ion battery[J]. Advanced Powder Technology, 2021, 32(8): 2828-2838
[17] ZHANG H, YANG Y, REN D, et al. Graphite as anode materials: Fundamental mechanism, recent progress and advances[J]. Energy Storage Materials, 2021, 36: 147-170
[18] LI P, KIM H, MYUNG S T, et al. Diverting exploration of silicon anode into practical way: A review focused on silicon-graphite composite for lithium ion batteries[J]. Energy Storage Materials, 2021, 35: 550-576
[19] LU Y, YE Z, ZHAO Y, et al. Graphene supported double-layer carbon encapsulated silicon for high-performance lithium-ion battery anode materials[J]. Carbon, 2023, 201: 962-971
[20] LIU X, LIU H, CAO Y, et al. Silicon nanoparticles embedded in chemical-expanded graphite through electrostatic attraction for high-performance lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2023, 15(7): 9457-9464
[21] LIU X, ZHONG L, HUANG S, et al. Size-dependent fracture of silicon nanoparticles during lithiation[J]. ACS Nano, 2012, 6(2): 1522-1531
[22] LIU H, YANG W, CHE S, et al. Silicon doped graphene as high cycle performance anode for lithium-ion batteries[J]. Carbon, 2022, 196: 633-638
[23] KANG M, HEO I, KIM S, et al. High-areal-capacity of micron-sized silicon anodes in lithium-ion batteries by using wrinkled-multilayered-graphenes[J]. Energy Storage Materials, 2022, 50: 234-242
[24] LI J, XU Q, LI G, et al. Research progress regarding Si-based anode materials towards practical application in high energy density Li-ion batteries[J]. Materials Chemistry Frontiers, 2017, 1(9): 1691-1708
[25] FOX A M, VRANKOVIC D, BUCHMEISER M R. Influence of the silicon-carbon interface on the structure and electrochemical performance of a phenolic resin-derived Si@C core-shell nanocomposite-based anode[J]. ACS Applied Materials & Interfaces, 2022, 14(1): 761-770
[26] ZHANG H, QIN X, WU J, et al. Electrospun core-shell silicon/carbon fibers with an internal honeycomb-like conductive carbon framework as an anode for lithium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(13): 7112-7120
[27] WU P, GUO C, HAN J, et al. Fabrication of double core-shell Si-based anode materials with nanostructure for lithium-ion battery[J]. RSC Advances, 2018, 8(17): 9094-9102
[28] JIN H, SUN Q, WANG J, et al. Preparation and electrochemical properties of novel silicon-carbon composite anode materials with a core-shell structure[J]. New Carbon Materials, 2021, 36(2): 390-400
[29] GUO S, HU X, HOU Y, et al. Tunable synthesis of yolk-shell porous Silicon@Carbon for optimizing Si/C-based anode of lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(48): 42084-42092
[30] LIU N, WU H, MCDOWELL M T, et al. A yolk-shell design for stabilized and scalable li-ion battery alloy anodes[J]. Nano Letters, 2012, 12(6): 3315-3321
[31] YANG L, LI H, LIU J, et al. Dual yolk-shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries[J]. Scientific Reports, 2015, 5: 10908
[32] XIE J, TONG L, SU L, et al. Core-shell yolk-shell Si@C@Void@C nanohybrids as advanced lithium ion battery anodes with good electronic conductivity and corrosion resistance[J]. Journal of Power Sources, 2017, 342: 529-536
[33] ZHANG H, XU J, ZHANG J. Preparation and electrochemical properties of core-shelled silicon-carbon composites as anode materials for lithium-ion batteries[J]. Journal of Applied Electrochemistry, 2019, 49(11): 1123-1132
[34] CHEN X, LI H, YAN Z, et al. Structure design and mechanism analysis of silicon anode for lithium-ion batteries[J]. Science China Materials, 2019, 62(11): 1515-1536
[35] 娜仁, 田建华, 碗海鹰, 等. 多级结构SnO2及其碳复合物的制备与电化学性能[J]. 化学工业与工程, 2018, 35(2): 16-21 Naren, TIAN Jianhua, WAN Haiying, et al. Preparation and electrochemical properties of hierarchical SnO2 and its carbon composite[J]. Chemical Industry and Engineering, 2018,35(2): 16-21
[36] TIAN X, XU Q, CHENG L, et al. Enhancing the performance of a self-standing Si/PCNF anode by optimizing the porous structure[J]. ACS Applied Materials & Interfaces, 2020, 12(24): 27219-27225
[37] LIU W, WANG J, WANG J, et al. Three-dimensional nitrogen-doped carbon coated hierarchically porous silicon composite as lithium-ion battery anode[J]. Journal of Alloys and Compounds, 2021, 874: 159921
[38] WANG M, FAN L, HUANG M, et al. Conversion of diatomite to porous Si/C composites as promising anode materials for lithium-ion batteries[J]. Journal of Power Sources, 2012, 219: 29-35
[39] REN W, WANG Y, ZHANG Z, et al. Carbon-coated porous silicon composites as high performance Li-ion battery anode materials: Can the production process be cheaper and greener?[J]. Journal of Materials Chemistry A, 2016, 4(2): 552-560
[40] LU Y, YE Z, ZHAO Y, et al. Graphene supported double-layer carbon encapsulated silicon for high-performance lithium-ion battery anode materials[J]. Carbon, 2023, 201: 962-971
[41] XIAN Z, TAO J, YU J, et al. Si@SiOx/CNF flexible anode prepared by electrospinning for Li-ion batteries[J]. Russian Journal of Electrochemistry, 2023, 59(5): 430-440
[42] PARK J M, KIM H, JEON H J, et al. Achieving high-performance Si nanoparticles-embedded carbon fiber film anodes in lithium-ion batteries through low current activation[J]. Electronic Materials Letters, 2023, 19(3): 251-259
[43] ZHANG W, FANG S, WANG N, et al. A compact silicon-carbon composite with an embedded structure for high cycling coulombic efficiency anode materials in lithium-ion batteries[J]. Inorganic Chemistry Frontiers, 2020, 7(13): 2487-2496
[44] DU Y, YANG Z, YANG Y, et al. Mussel-pearl-inspired design of Si/C composite for ultrastable lithium storage anodes[J]. Journal of Alloys and Compounds, 2021, 872: 159717
[45] LI X, CHO J H, LI N, et al. Carbon nanotube-enhanced growth of silicon nanowires as an anode for high-performance lithium-ion batteries[J]. Advanced Energy Materials, 2012, 2(1): 87-93
[46] YI R, ZAI J, DAI F, et al. Improved rate capability of Si—C composite anodes by boron doping for lithium-ion batteries[J]. Electrochemistry Communications, 2013, 36: 29-32
[47] LU Y, YE Z, ZHAO Y, et al. Graphene supported double-layer carbon encapsulated silicon for high-performance lithium-ion battery anode materials[J]. Carbon, 2023, 201: 962-971
[48] WANG H, XIE J, ZHANG S, et al. Scalable preparation of silicon@graphite/carbon microspheres as high-performance lithium-ion battery anode materials[J]. RSC Advances, 2016, 6(74): 69882-69888
[49] HUANG Y, LI W, PENG J, et al. Structure design and performance of the graphite/silicon/carbon nanotubes/carbon (GSCC) composite as the anode of a Li-ion battery[J]. Energy & Fuels, 2021, 35(16): 13491-13498
[50] ZHANG Y, MA H, YU C, et al. Si nanoplates prepared by ball milling photovoltaic silicon sawdust waste as lithium-ion batteries anode material[J]. Materials Letters, 2023, 331: 133469
[51] LI X, ZHANG M, YUAN S, et al. Research progress of silicon/carbon anode materials for lithium-ion batteries: Structure design and synthesis method[J]. ChemElectroChem, 2020, 7(21): 4289-4302
[52] LUO Z, FAN D, LIU X, et al. High performance silicon carbon composite anode materials for lithium ion batteries[J]. Journal of Power Sources, 2009, 189(1): 16-21
[53] ZHAO Q, HUANG Y, HU X. A Si/C nanocomposite anode by ball milling for highly reversible sodium storage[J]. Electrochemistry Communications, 2016, 70: 8-12
[54] NZABAHIMANA J, LIU Z, GUO S, et al. Top-down synthesis of silicon/carbon composite anode materials for lithium-ion batteries: Mechanical milling and etching[J]. ChemSusChem, 2020, 13(8): 1923-1946
[55] WANG D, GAO M, PAN H, et al. Enhanced cycle stability of micro-sized Si/C anode material with low carbon content fabricated via spray drying and in situ carbonization[J]. Journal of Alloys and Compounds, 2014, 604: 130-136
[56] JUNG D S, HWANG T H, PARK S B, et al. Spray drying method for large-scale and high-performance silicon negative electrodes in Li-ion batteries[J]. Nano Letters, 2013, 13(5): 2092-2097
[57] PAN Q, ZUO P, LOU S, et al. Micro-sized spherical silicon@carbon@graphene prepared by spray drying as anode material for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2017, 723: 434-440
[58] ZHU X, CHEN H, WANG Y, et al. Growth of silicon/carbon microrods on graphite microspheres as improved anodes for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(14): 4483-4489
[59] FU K, XUE L, YILDIZ O, et al. Effect of CVD carbon coatings on Si@CNF composite as anode for lithium-ion batteries[J]. Nano Energy, 2013, 2(5): 976-986
[60] DOU F, SHI L, CHEN G, et al. Silicon/carbon composite anode materials for lithium-ion batteries[J]. Electrochemical Energy Reviews, 2019, 2(1): 149-198
[61] ZHANG Z, ZHANG M, WANG Y, et al. Amorphous silicon-carbon nanospheres synthesized by chemical vapor deposition using cheap methyltrichlorosilane as improved anode materials for Li-ion batteries[J]. Nanoscale, 2013, 5(12): 5384-5389
[62] PARK B H, JEONG J H, LEE G W, et al. Highly conductive carbon nanotube micro-spherical network for high-rate silicon anode[J]. Journal of Power Sources, 2018, 394: 94-101
[63] MAGASINSKI A, DIXON P, HERTZBERG B, et al. High-performance lithium-ion anodes using a hierarchical bottom-up approach[J]. Nature Materials, 2010, 9: 353-358
[64] CUI L, YANG Y, HSU C M, et al. Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries[J]. Nano Letters, 2009, 9(9): 3370-3374
[65] KO M, CHAE S, MA J, et al. Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries[J]. Nature Energy, 2016, 1(9): 16113
[66] LIU B, HUANG P, XIE Z, et al. Large-scale production of a silicon nanowire/graphite composites anode via the CVD method for high-performance lithium-ion batteries[J]. Energy & Fuels, 2021, 35(3): 2758-2765
[67] ZHOU R, FAN R, TIAN Z, et al. Preparation and characterization of core-shell structure Si/C composite with multiple carbon phases as anode materials for lithium ion batteries[J]. Journal of Alloys and Compounds, 2016, 658: 91-97
[68] LIU Y, LIU X, ZHU Y, et al. Scalable synthesis of pitch-coated nanoporous Si/graphite composite anodes for lithium-ion batteries[J]. Energy & Fuels, 2023, 37(6): 4624-4631
[69] LI J, WANG J, YANG J, et al. Scalable synthesis of a novel structured graphite/silicon/pyrolyzed-carbon composite as anode material for high-performance lithium-ion batteries[J]. Journal of Alloys and Compounds, 2016, 688: 1072-1079
|