[1] AL ADASANI A, BAI B. Analysis of EOR projects and updated screening criteria[J]. Journal of Petroleum Science and Engineering, 2011, 79(1/2):10-24 [2] AFOLABI R O. Effect of surfactant and sydrophobe content on the rheology of poly(acrylamide-co-N-dodecylacrylamide) for potential enhanced oil recovery application[J]. American Journal of Polymer Science, 2015, 5(2):41-46 [3] KUMAR S, PAI K M, VINEETHA R, et al. Role of intraoral color Doppler sonography in predicting delayed cervical lymph node metastasis in patients with early-stage tongue cancer:A commentary[J]. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2016, 121(1):106-107 [4] 于喜艳, 肖丽华, 何能欣. 浅谈油藏地质特征及开发对策研究[J]. 科技风, 2020(14):144 YU Xiyan, XIAO Lihua, HE Nengxin. Discussion on reservoir geological characteristics and development countermeasures[J]. Technology Wind, 2020(14):144(in Chinese) [5] MANRIQUE E J, THOMAS C P, RAVIKIRAN R et al. EOR:Current status and opportunities[J]. Tulsa:SPE Improved Oil Recovery Symposium:Society of Petroleum Engineers, 2010 [6] SONG Z, LI Z, LAI F, et al. Derivation of water flooding characteristic curve for high water-cut oilfields[J]. Petroleum Exploration and Development, 2013, 40(2):216-223 [7] SONG Z, LI Z, YU C, et al. D-optimal design for rapid assessment model of CO2 flooding in high water cut oil reservoirs[J]. Journal of Natural Gas Science and Engineering, 2014, 21:764-771 [8] KAMAL M S, SULTAN A S, AL-MUBAIYEDH U A, et al. Review on polymer flooding:Rheology, adsorption, stability, and field applications of various polymer systems[J]. Polymer Reviews, 2015, 55(3):491-530 [9] SHENG J, LEONHARDT B, AZRI N. Status of polymer-flooding technology[J]. Journal of Canadian Petroleum Technology, 2015, 54(2):116-126 [10] NAZARI MOGHADDAM R, BAHRAMIAN A, FAKHROUEIAN Z, et al. Comparative study of using nanoparticles for enhanced oil recovery:Wettability alteration of carbonate rocks[J]. Energy & Fuels, 2015, 29(4):2111-2119 [11] 曲海莹, 刘琦, 彭勃, 等. 纳米颗粒对CO2泡沫体系稳定性的影响[J]. 油气地质与采收率, 2019, 26(5):120-126 QU Haiying, LIU Qi, PENG Bo, et al. Effect of nanoparticle on stability of CO2 foam flooding system[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(5):120-126(in Chinese) [12] ZHOU K, ZHOU X, LIU J, et al. Application of magnetic nanoparticles in petroleum industry:A review[J]. Journal of Petroleum Science and Engineering, 2020, doi:10.1016/j.petrol.2020.106943 [13] MAGHZI A, KHARRAT R, MOHEBBI A, et al. The impact of silica nanoparticles on the performance of polymer solution in presence of salts in polymer flooding for heavy oil recovery[J]. Fuel, 2014, 123:123-132 [14] Nanocomposites derived from polymers and inorganic nanoparticles[J]. Materials (Basel), 2010, 3(6):3654-3674 [15] SOLEIMANI H, BAIG M K, YAHYA N, et al. Impact of carbon nanotubes based nanofluid on oil recovery efficiency using core flooding[J]. Results in Physics, 2018, 9:39-48 [16] 程亚敏, 杜静, 罗文瑞, 等. 聚丙烯酰胺/2-丙烯酰胺-2-甲基-丙磺酸钠聚合物接枝纳米SiO2驱油剂的合成及其性能[J]. 化学研究, 2017, 28(2):230-235 CHENG Yamin, DU Jing, LUO Wenrui, et al. Synthesis and properties of oil displacement agent nanosilica grafted poly-acrylmide/2-acrylamido-2-methyl-1-propanesulfonic acid sodium[J]. Chemical Research, 2017, 28(2):230-235(in Chinese) [17] SAHA R, UPPALURI R V S, TIWARI P. Impact of natural surfactant (reetha), polymer (xanthan gum), and silica nanoparticles to enhance heavy crude oil recovery[J]. Energy & Fuels, 2019, 33(5):4225-4236 [18] SHARMA T, VELMURUGAN N, PATEL P, et al. Use of oil-in-water Pickering emulsion stabilized by nanoparticles in combination with polymer flood for enhanced oil recovery[J]. Petroleum Science and Technology, 2015, 33(17/18):1595-1604 [19] BEHZADI A, MOHAMMADI A. Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery[J]. Journal of Nanoparticle Research, 2016, doi:10.1007/s11051-016-3580-1 [20] AL-ANSSARI S, BARIFCANI A, WANG S, et al. Wettability alteration of oil-wet carbonate by silica nanofluid[J]. Journal of Colloid and Interface Science, 2016, 461:435-442 [21] HENDRANINGRAT L, TORSÆTER O. Metal oxide-based nanoparticles:Revealing their potential to enhance oil recovery in different wettability systems[J]. Applied Nanoscience, 2015, 5:181-199 [22] 王鸣川, 朱维耀, 王国锋, 等. 纳米聚合物微球在中渗高含水油田的模拟研究[J]. 西南石油大学学报(自然科学版), 2010, 32(5):105-108, 191 WANG Mingchuan, ZHU Weiyao, WANG Guofeng, et al. Study on the application of nano polymetric spheres in medium permeability and high water cut oilfield[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2010, 32(5):105-108, 191(in Chinese) [23] 杨景斌, 侯吉瑞, 屈鸣, 等. 2-D智能纳米黑卡在低渗透油藏中的驱油性能评价[J]. 油田化学, 2020, 37(2):305-310 YANG Jingbin, HOU Jirui, QU Ming, et al. Evaluation of oil displacement performance of two-dimensional smart black nano-card in low permeability reservoir[J]. Oilfield Chemistry, 2020, 37(2):305-310(in Chinese) [24] 王小聪, 雷群, 肖沛文, 等. 现场水配制纳米驱油剂及其驱油机理[J]. 石油学报, 2021, 42(3):350-357 WANG Xiaocong, LEI Qun, XIAO Peiwen, et al. Preparation of nano-oil-displacing agent with on-site water and its oil displacement mechanism[J]. Acta Petrolei Sinica, 2021, 42(3):350-357(in Chinese) [25] XIN H, AO D, WANG X, et al. Synthesis, characterization, and properties of copolymers of acrylamide with sodium 2-acrylamido-2-methylpropane sulfonate with nano silica structure[J]. Colloid and Polymer Science, 2015, 293(5):1307-1316 [26] PU W, LIU R, LI B, et al. Amphoteric hyperbranched polymers with multistimuli-responsive behavior in the application of polymer flooding[J]. RSC Advances, 2015, 5(107):88002-88013 [27] 曹瑞波, 丁志红, 刘海龙, 等. 低渗透油层聚合物驱渗透率界限及驱油效果实验研究[J]. 大庆石油地质与开发, 2005, 24(5):71-73, 108 CAO Ruibo, DING Zhihong, LIU Hailong, et al. Experimental research on permeability limits and displacement characteristics of polymer flooding in low permeability oil layers[J]. Petroleum Geology & Oilfield Development in Daqing, 2005, 24(5):71-73, 108(in Chinese) [28] FRANÇOIS J, SARAZIN D, SCHWARTZ T, et al. Polyacrylamide in water:Molecular weight dependence of 〈R2〉 and[η] and the problem of the excluded volume exponent[J]. Polymer, 1979, 20(8):969-975
|