[1] LUO H, ZENG Y, HE D, et al. Application of iron-based materials in heterogeneous advanced oxidation processes for wastewater treatment: A review[J]. Chemical Engineering Journal, 2021, 407: 127191 [2] ROSTAM A B, TAGHIZADEH M. Advanced oxidation processes integrated by membrane reactors and bioreactors for various wastewater treatments: A critical review[J]. Journal of Environmental Chemical Engineering, 2020, 8(6): 104566 [3] WAN N W S, TEONG L C, HANAFIAH M A K M. Adsorption of dyes and heavy metal ions by chitosan composites: A review[J]. Carbohydrate Polymers, 2011, 83(4): 1446-1456 [4] 左鸣. 电镀废水处理工艺优化研究[D]. 广州: 华南理工大学, 2012 ZUO Ming. Study on optimization of electroplating wastewater treatment process[D]. Guangzhou: South China University of Technology, 2012 (in Chinese) [5] 胡必清, 朱亚伟. 印染废水的化学法处理研究进展[J]. 印染, 2016, 42(13): 46-50 HU Biqing, ZHU Yawei. Research progress in chemical treatment of printing and dyeing wastewater[J]. China Dyeing & Finishing, 2016, 42(13): 46-50(in Chinese) [6] 梁波, 徐金球, 关杰, 等. 生物法处理印染废水的研究进展[J]. 化工环保, 2015, 35(3): 259-266 LIANG Bo, XU Jinqiu, GUAN Jie, et al. Research progresses in treatment of dyeing wastewater by biological methods[J]. Environmental Protection of Chemical Industry, 2015, 35(3): 259-266(in Chinese) [7] 吴建明. 壳聚糖/聚乙烯醇基纳米复合材料的制备及其在污水处理中的应用[D]. 合肥: 合肥工业大学, 2019 WU Jianming. Preparation of chitosan/PVA nanocomposites and its application in wastewater treatment[D]. Hefei: Hefei University of Technology, 2019 (in Chinese) [8] 罗文强. 羧甲基壳聚糖吸附剂对钴离子的吸附特性研究[D]. 上海: 华东理工大学, 2018 LUO Wenqiang. Study on adsorption characteristics of carboxymethyl chitosan adsorbent for cobalt ions[D]. Shanghai: East China University of Science and Technology, 2018 (in Chinese) [9] 王祥名, 吴松海, 王琮, 等. Cu2(NO3)(OH)3催化过硫酸盐降解苯酚[J]. 化学工业与工程, 2021, 38(1): 69-78 WANG Xiangming, WU Songhai, WANG Cong, et al. Catalytic degradation of phenol by persulfate activation using Cu2(NO3)(OH)3[J]. Chemical Industry and Engineering, 2021, 38(1): 69-78(in Chinese) [10] QI Y, LI J, ZHANG Y, et al. Novel lignin-based single atom catalysts as peroxymonosulfate activator for pollutants degradation: Role of single cobalt and electron transfer pathway[J]. Applied Catalysis B: Environmental, 2021, 286: 119910 [11] WANG F, YAO J, SUN K, et al. Adsorption of dialkyl phthalate esters on carbon nanotubes[J]. Environmental Science & Technology, 2010, 44(18): 6985-6991 [12] LODERER C, WÖRLE A, FUCHS W. Influence of different mesh filter module configurations on effluent quality and long-term filtration performance[J]. Environmental Science & Technology, 2012, 46(7): 3844-3850 [13] ZANG T, WANG H, LIU Y, et al. Fe-doped biochar derived from waste sludge for degradation of rhodamine B via enhancing activation of peroxymonosulfate[J]. Chemosphere, 2020, 261: 127616 [14] DUAN X, SU C, MIAO J, et al. Insights into perovskite-catalyzed peroxymonosulfate activation: Maneuverable cobalt sites for promoted evolution of sulfate radicals[J]. Applied Catalysis B: Environmental, 2018, 220: 626-634 [15] 张未军, 齐崴, 苏荣欣, 等. 电芬顿-臭氧一体化工艺处理船舶生活污水[J]. 化学工业与工程, 2017, 34(2): 62-67 ZHANG Weijun, QI Wei, SU Rongxin, et al. Removal of COD from sewage by integrated E-Fenton and ozone[J]. Chemical Industry and Engineering, 2017, 34(2): 62-67(in Chinese) [16] HODGES B C, CATES E L, KIM J H. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials[J]. Nature Nanotechnology, 2018, 13(8): 642-650 [17] ZHOU Y, WANG X, ZHU C, et al. New insight into the mechanism of peroxymonosulfate activation by sulfur-containing minerals: Role of sulfur conversion in sulfate radical generation[J]. Water Research, 2018, 142: 208-216 [18] AL HAKIM S, JABER S, ZEIN EDDINE N, et al. Degradation of theophylline in a UV254/PS system: Matrix effect and application to a factory effluent[J]. Chemical Engineering Journal, 2020, 380: 122478 [19] WEAVERS L K. Kinetics and mechanism of ultrasonic activation of persulfate: An in situ EPR spin trapping study[J]. Environmental Science & Technology, 2017, 51(6): 3410-3417 [20] REN Y, LIN L, MA J, et al. Sulfate radicals induced from peroxymonosulfate by magnetic ferrospinel MFe2O4 (M=Co, Cu, Mn, and Zn) as heterogeneous catalysts in the water[J]. Applied Catalysis B: Environmental, 2015, 165: 572-578 [21] ANIPSITAKIS G P, DIONYSIOU D D. Radical generation by the interaction of transition metals with common oxidants[J]. Environmental Science & Technology, 2004, 38(13): 3705-3712 [22] ZHANG A, HE Y, CHEN Y, et al. Degradation of organic pollutants by Co3O4-mediated peroxymonosulfate oxidation: Roles of high-energy{0 0 1}-exposed TiO2 support[J]. Chemical Engineering Journal, 2018, 334: 1430-1439 [23] 周丽. 钴基高级氧化法催化降解有机污染物的研究[D]. 北京: 北京化工大学, 2022 ZHOU Li. Study on catalytic degradation of organic pollutants by cobalt-based advanced oxidation[D]. Beijing: Beijing University of Chemical Technology, 2022 (in Chinese) [24] 曹志钦. 城市典型废弃物回收及在电芬顿处理废水中的再利用研究[D]. 天津: 天津大学, 2018 CAO Zhiqin. Study on recovery of typical municipal wastes and reuse in electro-Fenton treatment of wastewater[D]. Tianjin: Tianjin University, 2018 (in Chinese) [25] YAO Y, ZHU M, ZHAO Z, et al. Hydrometallurgical processes for recycling spent lithium-ion batteries: A critical review[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 13611-13627 [26] FAN L, LUO C, LV Z, et al. Removal of Ag+ from water environment using a novel magnetic thiourea-chitosan imprinted Ag+[J]. Journal of Hazardous Materials, 2011, 194: 193-201 [27] 李姗姗. 纤维素(CMC)基重金属吸附材料制备与性能研究[D]. 辽宁大连: 大连工业大学, 2021 LI Shanshan. Preparation and properties of cellulose (CMC)-based heavy metal adsorption materials[D]. Liaoning Dalian: Dalian Polytechnic University, 2021 (in Chinese) [28] SHEKHAWAT A, KAHU S, SARAVANAN D, et al. Tin(Ⅳ) cross-linked chitosan for the removal of As(Ⅲ)[J]. Carbohydrate Polymers, 2017, 172: 205-212 [29] PIVARČIOVÁ L, ROSSKOPFOVÁ O, GALAMBOŠ M, et al. Sorption of pertechnetate anions on chitosan[J]. Journal of Radioanalytical and Nuclear Chemistry, 2016, 308(1): 93-98 [30] HE H, LI Z, LI K, et al. Bifunctional graphene-based metal-free catalysts for oxidative coupling of amines[J]. ACS Applied Materials & Interfaces, 2019, 11(35): 31844-31850 [31] HE H, MA K, LIU H, et al. Unraveling the amine oxidative coupling activity of hierarchical porous Fe-N4-O1 single-atom catalysts: Oxygen atom-mediated dual reaction pathway[J]. Journal of Materials Chemistry A, 2022, 10(46): 24831-24838 [32] CHANG J, WANG G, CHANG X, et al. Interface synergism and engineering of Pd/Co@N-C for direct ethanol fuel cells[J]. Nature Communications, 2023, 14(1): 1-15 [33] TIAN W, ZHANG H, QIAN Z, et al. Bread-making synthesis of hierarchically Co@C nanoarchitecture in heteroatom doped porous carbons for oxidative degradation of emerging contaminants[J]. Applied Catalysis B: Environmental, 2018, 225: 76-83 [34] ZHANG S, WANG L, XIE T, et al. Heterointerface enhanced NiFe LDH/V-Co4N electrocatalysts for the oxygen evolution reaction[J]. Journal of Materials Chemistry A, 2022, 10(40): 21523-21530 [35] LIU X, YU H, JI J, et al. Graphene oxide-supported three-dimensional cobalt-nickel bimetallic sponge-mediated peroxymonosulfate activation for phenol degradation[J]. ACS ES&T Engineering, 2021, 1(12): 1705-1714 [36] CAI A, HE H, ZHANG Q, et al. Synergistic effect of N-doped sp2 carbon and porous structure in graphene gels toward selective oxidation of C—H bond[J]. ACS Applied Materials & Interfaces, 2021, 13(11): 13087-13096 [37] DU N, LIU Y, LI Q, et al. Peroxydisulfate activation by atomically-dispersed Fe-N<i>x on N-doped carbon: Mechanism of singlet oxygen evolution for nonradical degradation of aqueous contaminants[J]. Chemical Engineering Journal, 2021, 413: 127545 [38] 王清, 张凤宝, 范晓彬, 等. 氮掺杂中空多孔碳材料活化过一硫酸盐催化降解双酚A[J]. 化学工业与工程, 2022, 39(6): 1-13 WANG Qing, ZHANG Fengbao, FAN Xiaobin, et al. Activation of peroxymonosulfate for bisphenol A degradation by nitrogen-doped hollow porous carbon materials[J]. Chemical Industry and Engineering, 2022, 39(6): 1-13(in Chinese) [39] ZHAO C, MENG L, CHU H, et al. Ultrafast degradation of emerging organic pollutants via activation of peroxymonosulfate over Fe3C/Fe@N-C-x: Singlet oxygen evolution and electron-transfer mechanisms[J]. Applied Catalysis B: Environmental, 2023, 321: 122034 [40] WANG Q, LIU X, CAI A, et al. Atomically Fe doped hollow mesoporous carbon spheres for peroxymonosulfate mediated advanced oxidation processes with a dual activation pathway[J]. Journal of Materials Chemistry A, 2022, 10(38): 20535-20544 [41] DUAN X, SU C, ZHOU L, et al. Surface controlled generation of reactive radicals from persulfate by carbocatalysis on nanodiamonds[J]. Applied Catalysis B: Environmental, 2016, 194: 7-15 [42] YANG J, LIN Y, PENG H, et al. Novel magnetic rod-like Mn-Fe oxycarbide toward peroxymonosulfate activation for efficient oxidation of butyl paraben: Radical oxidation versus singlet oxygenation[J]. Applied Catalysis B: Environmental, 2020, 268: 118549 [43] LI H, SHAN C, PAN B. Fe(Ⅲ)-doped g-C3N4 mediated peroxymonosulfate activation for selective degradation of phenolic compounds via high-valent iron-oxo species[J]. Environmental Science & Technology, 2018, 52(4): 2197-2205 [44] WANG J, WANG S. Effect of inorganic anions on the performance of advanced oxidation processes for degradation of organic contaminants[J]. Chemical Engineering Journal, 2021, 411: 128392 [45] ZHAO Y, HUANG B, JIANG J, et al. Polyphenol-metal network derived nanocomposite to catalyze peroxymonosulfate decomposition for dye degradation [J]. Chemosphere, 2020, 244: 125577 [46] REN W, NIE G, ZHOU P, et al. The intrinsic nature of persulfate activation and N-doping in carbocatalysis[J]. Environmental Science & Technology, 2020, 54(10): 6438-6447 [47] ZHOU Y, JIANG J, GAO Y, et al. Activation of peroxymonosulfate by benzoquinone: A novel nonradical oxidation process[J]. Environmental Science & Technology, 2015, 49(21): 12941-12950 [48] LI B, MA B, WEI M, et al. Synthesis of Co-NC catalysts from spent lithium-ion batteries for Fenton-like reaction: Generation of singlet oxygen with ~100% selectivity[J]. Carbon, 2022, 197: 76-86 [49] LIU X, WANG J, WU D, et al. N-doped carbon dots decorated 3D g-C3N4 for visible-light driven peroxydisulfate activation: Insights of non-radical route induced by Na+ doping[J]. Applied Catalysis B: Environmental, 2022, 310: 121304
|