[1] OKUBO T, IGUCHI A, TANAKA S. Health impact of agricultural drainage water for farmers in the west Nile delta[J]. International Journal of Environmental Research, 2019, 13(2):319-325 [2] AHMAD A, GHUFRAN R. Review on industrial wastewater energy sources and carbon emission reduction:Towards a clean production[J]. International Journal of Sustainable Engineering, 2019, 12(1):47-57 [3] 章波, 姚立荣, 程寒飞, 等. 微波强化催化H2O2处理印染生化出水及有机物去除[J]. 工业水处理, 2019, 39(8):65-68 ZHANG Bo, YAO Lirong, CHENG Hanfei, et al. Degradation of biochemical treated effluent of dyeing wastewater and its organics removal by microwave-enhanced catalytic H2O2[J]. Industrial Water Treatment, 2019, 39(8):65-68(in Chinese) [4] CARDOSO J C, BESSEGATO G G, BOLDRIN ZANONI M V. Efficiency comparison of ozonation, photolysis, photocatalysis and photoelectrocatalysis methods in real textile wastewater decolorization[J]. Water Research, 2016, 98:39-46 [5] 王春英, 朱清江, 谷传涛, 等. 稀土Ce3+掺杂Bi2WO6光催化降解罗丹明B的研究[J]. 中国环境科学, 2015, 35(9):2682-2689 WANG Chunying, ZHU Qingjiang, GU Chuantao, et al. Investigation of rhodamine B photocatalytic degradation by Ce3+ doped Bi2WO6[J]. China Environmental Science, 2015, 35(9):2682-2689(in Chinese) [6] 黄肖桢, 常薇, 刘斌, 等. 同轴电纺法TiO2/g-C3N4的制备及光催化性能研究[J]. 化学工业与工程, 2021, 38(5):35-41 HUANG Xiaozhen, CHANG Wei, LIU Bin, et al. Preparation of TiO2/g-C3N4 composite by coaxial electrospinning and its photocatalytic performance[J]. Chemical Industry and Engineering, 2021, 38(5):35-41(in Chinese) [7] WANG X, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8(1):76-80 [8] WANG J, LIU C, YANG S, et al. Fabrication of a ternary heterostructure BiVO4 quantum dots/C60/g-C3N4 photocatalyst with enhanced photocatalytic activity[J]. Journal of Physics and Chemistry of Solids, 2020, doi:10.1016/j.jpcs.2019.109164 [9] CUI L, LIU Y, WANG Y, et al. Constructing ultrathin g-C3N4 nanosheets with hierarchical pores by NaClO induced wet etching for efficient photocatalytic Cr(VI) detoxification under visible light irradiation[J]. Diamond and Related Materials, 2018, 88:51-59 [10] JIANG Y, SUN Z, CHEN Q, et al. Sulfate modified g-C3N4 with enhanced photocatalytic activity towards hydrogen evolution:The role of sulfate in photocatalysis[J]. Physical Chemistry Chemical Physics:PCCP, 2020, 22(18):10116-10122 [11] XU H, XIAO R, HUANG J, et al. In situ construction of protonated g-C3N4/Ti3C2 MXene Schottky heterojunctions for efficient photocatalytic hydrogen production[J]. Chinese Journal of Catalysis, 2021, 42(1):107-114 [12] LI K, LIANG Y, YANG H, et al. New insight into the mechanism of enhanced photo-Fenton reaction efficiency for Fe-doped semiconductors:A case study of Fe/g-C3N4[J]. Catalysis Today, 2021, 371:58-63 [13] LI F, ZHAO R, YANG B, et al. Facial synthesis of dandelion-like g-C3N4/Ag with high performance of photocatalytic hydrogen production[J]. International Journal of Hydrogen Energy, 2019, 44(57):30185-30195 [14] ANTONIADOU M, ARFANIS M K, IBRAHIM I, et al. Bifunctional g-C3N4/WO3 thin films for photocatalytic water purification[J]. Water, 2019, doi:10.3390/w11122439 [15] LIU S, WANG S, JIANG Y, et al. Synthesis of Fe2O3 loaded porous g-C3N4 photocatalyst for photocatalytic reduction of dinitrogen to ammonia[J]. Chemical Engineering Journal, 2019, 373:572-579 [16] JIA Z, REN D, LIANG Y, et al. A new strategy for the preparation of porous zinc ferrite nanorods with subsequently light-driven photocatalytic activity[J]. Materials Letters, 2011, 65(19/20):3116-3119 [17] RAJPUT J K, KAUR G. Synthesis and applications of CoFe2O4 nanoparticles for multicomponent reactions[J]. Catalysis Science & Technology, 2014, 4(1):142-151 [18] SONU, DUTTA V, SHARMA S, et al. Review on augmentation in photocatalytic activity of CoFe2O4 via heterojunction formation for photocatalysis of organic pollutants in water[J]. Journal of Saudi Chemical Society, 2019, 23(8):1119-1136 [19] CHEN Y, XU R, LI Y et al. La(OH)3-modified magnetic CoFe2O4 nanocomposites:A novel adsorbent with highly efficient activity and reusability for phosphate removal[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, doi:10.1016/j.colsurfa.2020.124870 [20] LV S, LIU J, ZHAO N, et al. MOF-derived CoFe2O4/Fe2O3 embedded in g-C3N4 as high-efficient Z-scheme photocatalysts for enhanced degradation of emerging organic pollutants in the presence of persulfate[J]. Separation and Purification Technology, 2020, doi:10.1016/j.seppur.2020.117413 [21] HUANG S, XU Y, XIE M, et al. Synthesis of magnetic CoFe2O4/g-C3N4 composite and its enhancement of photocatalytic ability under visible-light[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2015, 478:71-80 [22] 陶虎春, 邓丽平, 张丽娟, 等. 磁性CoFe2O4/g-C3N4复合纳米材料对环丙沙星的光催化降解研究[J]. 北京大学学报(自然科学版), 2021, 57(3):587-594 TAO Huchun, DENG Liping, ZHANG Lijuan, et al. Photocatalytic degradation of ciprofloxacin by magnetic CoFe2O4/g-C3N4 nanocomposites[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2021, 57(3):587-594(in Chinese) [23] RENUKADEVI S, JEYAKUMARI A P. A one-pot microwave irradiation route to synthesis of CoFe2O4/g-C3N4 heterojunction catalysts for high visible light photocatalytic activity:Exploration of efficiency and stability[J]. Diamond and Related Materials, 2020, doi:10.1016/j.diamond.2020.108012 [24] YAO Y, WU G, LU F, et al. Enhanced photo-Fenton-like process over Z-scheme CoFe2O4/g-C3N4 Heterostructures under natural indoor light[J]. Environmental Science and Pollution Research, 2016, 23(21):21833-21845 [25] YAO Y, CAI Y, LU F, et al. Magnetic ZnFe2O4-C3N4 hybrid for photocatalytic degradation of aqueous organic pollutants by visible light[J]. Industrial and Engineering Chemistry Research, 2014, 53(44):17294-17302 [26] CAO H, LIU Z, HUANG L, et al. Construction of carboxyl position-controlled Z-scheme n-ZnO/p-Cu2O heterojunctions with enhanced photocatalytic property for different pollutants[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, doi:10.1016/j.colsurfa.2020.125373 [27] FAN T, CHEN C, TANG Z, et al. Synthesis and characterization of g-C3N4/BiFeO3 composites with an enhanced visible light photocatalytic activity[J]. Materials Science in Semiconductor Processing, 2015, 40:439-445 [28] SHAN W, HU Y, BAI Z, et al. In situ preparation of g-C3N4/bismuth-based oxide nanocomposites with enhanced photocatalytic activity[J]. Applied Catalysis B:Environmental, 2016, 188:1-12
|