[1] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238: 37-38
[2] Halmann M. Photoelectrochemical reduction of aqueous carbon-dioxide on p-type gallium-phosphide in liquid junction solar-cells [J]. Nature, 1978, 275(5 676): 115-116
[3] Inoue T, Fujishima A, Konishi S, et al. Photoelectrocatalytic reduction of carbon-dioxide in aqueous suspensions of semiconductor powders[J]. Nature, 1979, 277(5 698): 637-638
[4] Hoffmann M R, Moss J A, Baum M M. Artificial photosynthesis: Semiconductor photocatalytic fixation of CO2 to afford higher organic compounds[J]. Dalton Transactions, 2011, 40(19): 5 151-5 158
[5] Indrakanti V P, Kubicki J D, Schobert H H. Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook [J]. Energy & Environmental Science, 2009, 2(7): 745-758
[6] Palmisano G, Garcia-Lopez E, Marci G, et al. Advances in selective conversions by heterogeneous photocatalysis[J]. Chemical Communications, 2010, 46(38): 7 074-7 089
[7] Roy S C, Varghese O K, Paulose M, et al. Toward solar fuels: Photocatalytic conversion of carbon dioxide to hydrocarbons[J]. Acs Nano, 2010, 4(3): 1 259-1 278
[8] 蓝奔月, 史海峰. 光催化CO2转化为碳氢燃料体系的综述 [J]. 物理化学学报, 2014, (12): 2 177-2 196 Lan Benyue, Shi Haifeng. Review of systems for photocatalytic conversion of CO2 to hydrocarbon fuels[J]. Acta Physico-Chimica Sinica, 2014, (12): 2 177-2 196(in Chinese)
[9] Kumar B, Llorente M, Froehlich J, et al. Photochemical and photoelectrochemical reduction of CO2 [J]. Annual Review of Physical Chemistry, 2012, 63: 541-569
[10] Koci K, Obalova L, Matejova L, et al. Effect of TiO2 particle size on the photocatalytic reduction of CO2 [J]. Appl Catal B-Environ, 2009, 89(3/4): 494-502
[11] Li Y, Wang W, Zhan Z, et al. Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts [J]. Appl Catal B-Environ, 2010, 100(1/2): 386-392
[12] Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO2 surfaces-principles, mechanisms, and selected results [J]. Chem Rev, 1995, 95(3): 735-758
[13] Yamashita H, Kamada N, He H, et al. Reduction of CO2 with H2O on TiO2 (100) and TiO2 (110) single-crystals under uv-irradiation [J]. Chemistry Letters, 1994, (5): 855-858
[14] 朱思慧, 樊国栋, 李桂庆. 中国与世界新能源利用概况 [J]. 能源与节能, 2011, (4): 19-20 Zhu Sihui, Fan Guodong, Li Guiqing. Overview of new energy in China and world[J]. Energy and Energy Conservation, 2011, (4): 19-20(in Chinese)
[15] Nowak D J, Crane D E. Carbon storage and sequestration by urban trees in the USA [J]. Environ Pollut, 2002, 116(3): 381-389
[16] 李天成, 冯霞, 李鑫钢. 二氧化碳处理技术现状及其发展趋势 [J]. 化学工业与工程, 2002, 19(2): 191-196, 215 Li Tiancheng, Fen Xia, Li Xingang.The current status and the developing trends of carbon dioxide treating technologies[J]. Chemcial Industry and Engineering, 2002,19(2): 191-196, 215 (in Chinese)
[17] Chen L, Graham M E, Li G, et al. Photoreduction of CO2 by TiO2 nanocomposites synthesized through reactive direct current magnetron sputter deposition [J]. Thin Solid Films, 2009, 517(19): 5 641-5 645
[18] Anpo M, Yamashita H, Ichihashi Y, et al. Photocatalytic reduction of CO2 with H2O on various titanium-oxide catalysts [J]. Journal of Electroanalytical Chemistry, 1995, 396(1/2): 21-26
[19] Anpo M, Yamashita H, Ichihashi Y, et al. Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites: Effects of the structure of the active sites and the addition of Pt [J]. J Phys Chem B, 1997, 101(14): 2 632-2 636
[20] Ikeue K, Nozaki S, Ogawa M, et al. Photocatalytic reduction of CO2 with H2O on Ti-containing porous silica thin film photocatalysts [J]. Catal Lett, 2002, 80(3/4): 111-114
[21] Ikeue K, Yamashita H, Anpo M, et al. Photocatalytic reduction of CO2 with H2O on Ti-beta zeolite photocatalysts: Effect of the hydrophobic and hydrophilic properties [J]. J Phys Chem B, 2001, 105(35): 8 350-8 355
[22] Yamashita H, Ikeue K, Takewaki T, et al. In situ XAFS studies on the effects of the hydrophobic-hydrophilic properties of Ti-beta zeolites in the photocatalytic reduction of CO2 with H2O [J]. Top Catal, 2002, 18(1/2): 95-100
[23] Sato S. Photocatalytic activity of NOx-doped TiO2 in the visible-light region [J]. Chemical Physics Letters, 1986, 123(1/2): 126-128
[24] Asahi R, Morikawa T, Ohwaki T, et al. Visible-Light photocatalysis in nitrogen-doped titanium oxides [J]. Science, 2001, 293(5 528): 269-271
[25] Irie H, Watanabe Y, Hashimoto K. Nitrogen-Concentration dependence on photocatalytic activity of TiO2-xNx powders [J]. J Phys Chem B, 2003, 107(23): 5 483-5 486
[26] Miyauchi M, Ikezawa A, Tobimatsu H, et al. Zeta potential and photocatalytic activity of nitrogen doped TiO2 thin films [J]. Physical Chemistry Chemical Physics, 2004, 6(4): 865-870
[27] Sakthivel S, Kisch H. Photocatalytic and photoelectrochemical properties of nitrogen-doped titanium dioxide [J]. Chemphyschem, 2003, 4(5): 487-490
[28] 熊卓, 赵永椿, 张军营, 等. Ti基CO2光催化还原及其影响因素研究进展[J]. 化工进展, 2013, (5): 1 043-1 052, 1 162 Xiong Zhuo, Zhao Yongchun, Zhang Junying, et al. Research progress in photocatalytic reduction of CO2 using titania-based catalysts[J]. Chemical Industry and Engineering Progress, 2013, 32(5): 1 043-1 052, 1 162(in Chinese)
[29] Umebayashi T, Yamaki T, Itoh H, et al. Band gap narrowing of titanium dioxide by sulfur doping [J]. Applied Physics Letters, 2002, 81(3): 454-456
[30] Ohno T, Mitsui T, Matsumura M. Photocatalytic activity of S-doped TiO2 photocatalyst under visible light [J]. Chemistry Letters, 2003, 32(4): 364-365
[31] Nukumizu K, Nunoshige J, Takata T, et al. Tinxoyfz as a stable photocatalyst for water oxidation in visible light (<570 nm) [J]. Chemistry Letters, 2003, 32(2): 196-197
[32] Tseng I H, Wu J C S. Chemical states of metal-loaded titania in the photoreduction of CO2 [J]. Catalysis Today, 2004, 97(2/3): 113-119
[33] Yamashita H, Nishiguchi H, Kamada N, et al. Photocatalytic reduction of CO2 with H2O on TiO2 and Cu/TiO2 catalysts [J]. Res Chem Intermed, 1994, 20(8): 815-823
[34] Ishitani O, Inoue C, Suzuki Y, et al. Photocatalytic reduction of carbon-dioxide to methane and acetic-acid by an aqueous suspension of metal-deposited TiO2 [J]. Journal of Photochemistry and Photobiology a-Chemistry, 1993, 72(3): 269-271
[35] Koci K, Mateju K, Obalova L, et al. Effect of silver doping on the TiO2 for photocatalytic reduction of CO2 [J]. Appl Catal B-Environ, 2010, 96(3/4): 239-244
[36] Sooklal K, Hanus L H, Ploehn H J, et al. A blue-emitting cds/dendrimer nanocomposite[J]. Advanced Materials, 1998, 10(14): 1 083-1 087
[37] Johne P, Kisch H. Photoreduction of carbon dioxide catalysed by free and supported zinc and cadmium sulphide powders[J]. Journal of Photochemistry and Photobiology A-Chemistry, 1997, 111(1/3): 223-228
[38] Serpone N, Maruthamuthu P, Pichat P, et al. Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol,2-chlorophenol and pentachiorophenol: Chemical evidence for electron and hole transfer between coupled semiconductors[J]. J Photochem Photobiol A:1995,(85):247-255
[39] Wang C, Thompson R L, Baltrus J, et al. Visible light photoreduction of CO2 using CdSe/Pt/ TiO2 heterostructured catalysts [J]. Journal of Physical Chemistry Letters, 2010, 1(1): 48-53
[40] Liu B, Torimoto T, Yoneyama H. Photocatalytic reduction of carbon dioxide in the presence of nitrate using TiO2 nanocrystal photocatalyst embedded in SiO2 matrices [J]. Journal of Photochemistry and Photobiology A-Chemistry, 1998, 115(3): 227-230
[41] 王会香, 姜东, 吴东, 等. TiO2光催化还原CO2 [J]. 化学进展, 2012, (11): 2 116-2 123 Wang Huixiang, Jiang Dong, Wu Dong, et al. Photocatalytic reduction of CO2 on TiO2 catalysts[J]. Progress in Chemistry, 2012, (11): 2 116-2 123(in Chinese)
[42] Diebold U. The surface science of titanium dioxide [J]. Surface Science Reports, 2003, 48(5/8): 53-229
[43] Gopel W, Rocker G, Feierabend R. Intrinsic defects of TiO2 (110)-interaction with chemisorbed O2, H2, CO, and CO2 [J]. Physical Review B, 1983, 28(6): 3 427-3 438
[44] Chen X, Liu L, Yu P, et al. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals [J]. Science, 2011, 331(6 018): 746-750
[45] Danon A, Bhattacharyya K, Vijayan B K, et al. Effect of reactor materials on the properties of titanium oxide nanotubes [J]. Acs Catalysis, 2012, 2(1): 45-49
[46] Liu Q, Zhou Y, Kou J, et al. High-Yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel [J]. Journal of the American Chemical Society, 2010, 132(41): 14 385-14 387
[47] Kim J J, Summers D P, Frese K W. Reduction of CO2 and CO to methane on Cu foil electrodes [J]. Journal of Electroanalytical Chemistry, 1988, 245(1/2): 223-244
[48] Zhou Y, Tian Z, Zhao Z, et al. High-Yield synthesis of ultrathin and uniform Bi2WO6 square nanoplates benefitting from photocatalytic reduction of CO2 into renewable hydrocarbon fuel under visible light [J]. ACS Applied Materials & Interfaces, 2011, 3(9): 3 594-3 601
[49] Park H A, Choi J H, Choi K M, et al. Highly porous gallium oxide with a high CO2 affinity for the photocatalytic conversion of carbon dioxide into methane [J]. Journal of Materials Chemistry, 2012, 22(12): 5 304-5 307
[50] Li X, Chen J, Li H, et al. Photoreduction of CO2 to methanol over Bi2S3/CdS photocatalyst under visible light irradiation [J]. Journal of Natural Gas Chemistry, 2011, 20(4): 413-417
[51] Wang A, Li X, Zhao Y, et al. Preparation and characterizations of Cu2O/reduced graphene oxide nanocomposites with high photo-catalytic performances [J]. Powder Technology, 2014, 261: 42-48
|