[1] Lim S Y, Shen W, Gao Z. Carbon quantum dots and their applications[J]. Chemical Society Reviews, 2015, 44(1):362-381
[2] Qu D, Zheng M, Zhang L, et al. Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots[J]. Scientific Reports, 2014, doi:10.1038/srep05294
[3] Liu H, Li Z, Sun Y, et al. Synthesis of luminescent carbon dots with ultrahigh quantum yield and inherent folate receptor-positive cancer cell targetability[J]. Scientific Reports, 2018, doi:10.1038/s41598-018-19373-3
[4] Ding Y, Gong X, Liu Y, et al. Facile preparation of bright orange fluorescent carbon dots and the constructed biosensing platform for the detection of pH in living cells[J]. Talanta, 2018, 189:8-15
[5] Kim M C, Yu K, Han S, et al. Highly photoluminescent N-isopropylacrylamide (NIPAAM) passivated carbon dots for multicolor bioimaging applications[J]. European Polymer Journal, 2018, 98:191-198
[6] Yuan F, Wang Z, Li X, et al. Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes[J]. Advanced Materials, 2017, doi:10.1002/adma.201604436
[7] Song Y, Yan X, Li Z, et al. Highly photoluminescent carbon dots derived from linseed and their applications in cellular imaging and sensing[J]. Journal of Materials Chemistry B, 2018, 6(19):3181-3187
[8] Sun Y, Zhou B, Lin Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence[J]. Journal of the American Chemical Society, 2006, 128(24):7756-7757
[9] Zhu S, Wang L, Zhou N, et al. The crosslink enhanced emission (CEE) in non-conjugated polymer dots:From the photoluminescence mechanism to the cellular uptake mechanism and internalization[J]. Chem Commun, 2014, 50(89):13845-13848
[10] Zhou Y, Sharma S, Peng Z, et al. Polymers in carbon dots:A review[J]. Polymers, 2017, 9(67):1-20
[11] Xu X, Ray R, Gu Y, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. Journal of the American Chemistry Society, 2004, 126(40):12736-12737
[12] Zhu S, Song Y, Zhao X, et al. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots):Current state and future perspective[J]. Nano Research, 2015, 8(2):355-381
[13] Shen J, Zhu Y, Yang X, et al. Graphene quantum dots:Emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices[J]. Chemical Communications, 2012, 48(31):3686
[14] Bourlinos A B, Stassinopoulos A, Anglos D, et al. Surface functionalized carbogenic quantum dots[J]. Small, 2008, 4(4):455-458
[15] 陶淞源, 朱守俊, 杨柏. 新型碳基发光纳米材料:碳点:研究进展及展望[J]. 科学观察, 2019, 14(6):35-37 Tao Songyuan, Zhu Shoujun, Yan Bai. A new kinds of carbon-based luminous nanomaterials:Carbon dots:Its progresses and prospects[J]. Science Focus, 2019, 14(6):35-37(in Chinese)
[16] 赵晓欢. 刺激响应性碳化聚合物点及其复合物的合成及应用[D]. 长春:吉林大学, 2019 Zhao xiaohuan. Stimuli-responsive carbonized pol-ymer dots and their composites:synthesis and their application[D]. Changchun:Jilin University, 2019
[17] Wang Y, Wang K, Han Z, et al. High color rendering index trichromatic white and red LEDs prepared from silane-functionalized carbon dots[J]. Journal of Materials Chemistry C, 2017, 5(37):9629-9637
[18] Wei Z, Li H, Liu S, et al. Carbon dots as fluorescent/colorimetric probes for real-time detection of hypochlorite and ascorbic acid in cells and body fluid[J]. Analytical Chemistry, 2019, 91(24):15477-15483
[19] Liang L, Yan W, Qin X, et al. Designing sub-2 nm organosilica nanohybrids for far-field super-resolution imaging[J]. Angewandte Chemie, 2020, 132(2):756-761
[20] Sharma A, Gadly T, Gupta A, et al. Origin of excitation dependent fluorescence in carbon nanodots[J]. The Journal of Physical Chemistry Letters, 2016, 7(18):3695-3702
[21] 张雪, 耿乙迦, 陶淞源, 等. 碳化聚合物点发光主体的探究[J]. 高等学校化学学报, 2019, 40(12):2521-2525 Zhang Xue, Geng Yijia, Tao Songyuan, et al. Main luminescent centers of carbonized polymer dots[J]. Chemical Journal of Chinese Universities, 2019, 40(12):2521-2525(in Chinese)
[22] Tao S, Zhu S, Feng T, et al. Crosslink-enhanced emission effect on luminescence in polymers:Advances and perspectives[J]. Angewandte Chemie, 2020, 132(25):9910-9924
[23] 胡哲, 张万路, 郭睿倩. 碳点的可调谐荧光性能研究进展[J]. 光源与照明, 2020, 2:1-5 Hu Zhe, Zhang Wanlu, Guo Ruiqian. Research pro-gress on tunable fluorescence properties of carbon dots[J]. Lamps & Lighting, 2020, 2:1-5(in Chinese)
[24] 杨树良. 微波水热法制备生物质聚合物点及其在水样品检测中的应用[D]. 长春:吉林大学, 2020 Yang Shuliang. Preparation of biomass polymer dots by microwave hydrothermal method and its application in water sample detection[D]. Changchun:Jilin University, 2020(in Chinese)
[25] Das P, Maity P, Ganguly S, et al. Biocompatible carbon dots derived from κ-carrageenan and phenyl boronic acid for dual modality sensing platform of sugar and its anti-diabetic drug release behavior[J]. International Journal of Biological Macromolecules, 2019, 132:316-329
[26] Liu Y, Liu Y, Park S J, et al. One-step synthesis of robust nitrogen-doped carbon dots:Acid-evoked fluorescence enhancement and their application in Fe3+ detection[J]. Journal of Materials Chemistry A, 2015, 3(34):17747-17754
[27] Yang S, Wang L, Zuo L, et al. Non-conjugated polymer carbon dots for fluorometric determination of metronidazole[J]. Microchimica Acta, 2019, 186(9):1-9
[28] Dela C, Thongsai N, De L, et al. Preparation of highly photoluminescent carbon dots from polyure-thane:Optimization using response surface methodology and selective detection of silver (Ⅰ) ion[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2019, 568:184-194
[29] Wang C, Zhou J, Ran G, et al. Bi-functional fluorescent polymer dots:A one-step synthesis via controlled hydrothermal treatment and application as probes for the detection of temperature and Fe3+[J]. Journal of Materials Chemistry C, 2017, 5(2):434-443
[30] Xie Z, Wang F, Liu C. Organic-inorganic hybrid functional carbon dot gel glasses[J]. Advanced Materials, 2012, 24(13):1716-1721
[31] Sun B, Zhao B, Wang D, et al. Fluorescent non-conjugated polymer dots for targeted cell imaging[J]. Nanoscale, 2016, 8(18):9837-9841
[32] Liu C, Zhang P, Zhai X, et al. Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence[J]. Biomaterials, 2012, 33(13):3604-3613
[33] Momper R, Steinbrecher J, Dorn M, et al. Enhanced photoluminescence properties of a carbon dot system through surface interaction with polymeric nanoparticles[J]. Journal of Colloid and Interface Science, 2018, 518:11-20
[34] Majumdar S, Bhattacharjee T, Thakur D, et al. Carbon dot based fluorescence sensor for retinoic acid[J]. Chemistry Select, 2018, 3(2):673-677
[35] Zhang C, Liu M, Li T, et al. One-pot hydrothermal synthesis of dual-emission fluorescent carbon dots for hypochlorous acid detection[J]. Dyes and Pigments, 2020, doi:10.1007/s10895-019-02480-3
[36] Zhang H, Dong X, Wang J, et al. Fluorescence emission of polyethylenimine-derived polymer dots and its application to detect copper and hypo-chlorite ions[J]. ACS Applied Materials & Interfaces, 2019, 11(35):32489-32499
[37] Liu H, He Z, Jiang L, et al. Microwave-assisted synthesis of wavelength-tunable photoluminescent carbon nanodots and their potential applications[J]. ACS Applied Materials & Interfaces, 2015, 7(8):4913-4920
[38] Zhao L, Li H, Liu H, et al. Microwave-assisted facile synthesis of polymer dots as a fluorescent probe for detection of cobalt(Ⅱ) and manganese(Ⅱ)[J]. Analytical and Bioanalytical Chemistry, 2019, 411(11):2373-2381
[39] Jiang K, Zhang L, Lu J, et al. Triple-mode emission of carbon dots:Applications for advanced anti-counterfeiting[J]. Angewandte Chemie International Edition, 2016, 55(25):7231-7235
[40] Jiang K, Wang Y, Cai C, et al. Activating room tem-perature long afterglow of carbon dots via covalent fixation[J]. Chemistry of Materials, 2017, 29(11):4866-4873
[41] Hou X, Hu Y, Wang P, et al. Modified facile synthesis for quantitatively fluorescent carbon dots[J]. Carbon, 2017, 122:389-394
[42] Kundu A, Lee J, Park B, et al. Facile approach to synthesize highly fluorescent multicolor emissive carbon dots via surface functionalization for cellular imaging[J]. Journal of Colloid and Interface Science, 2018, 513:505-514
[43] Virca C N, Winter H M, Goforth A M, et al. Photocatalytic water reduction using a polymer coated carbon quantum dot sensitizer and a nickel nanoparticle catalyst[J]. Nanotechnology, 2017, doi:10.1088/1361-6528/aa6ae3
[44] Li D, Jing P, Sun L, et al. Carbon dots:Near-infrared excitation/emission and multiphoton-induced fluorescence of carbon dots[J]. Advanced Materials, 2018, doi:10.1002/adma.201705913
[45] Chen X, Zhang X, Guo Y, et al. Supramolecular nanogels:Smart supramolecular "Trojan horse"-inspired nanogels for realizing light-triggered nuclear drug influx in drug-resistant cancer cells[J]. Advanced Functional Materials, 2019, doi:10.1002/adfm.201807772
[46] Lan M, Zhao S, Zhang Z, et al. Two-photon-excited near-infrared emissive carbon dots as multifunc-tional agents for fluorescence imaging and photo-thermal therapy[J]. Nano Research, 2017, 10(9):3113-3123
[47] Guo L, Ge J, Liu W, et al. Tunable multicolor carbon dots prepared from well-defined polythiophene derivatives and their emission mechanism[J]. Nanoscale, 2016, 8(2):729-734
[48] Ge J, Jia Q, Liu W, et al. Theranostics:Carbon dots with intrinsic theranostic properties for bioimaging, red-light-triggered photodynamic/photothermal simultaneous therapy in vitro and in vivo[J]. Advanced Healthcare Materials, 2016, doi:10.1002/adhm.201500720
[49] Hess S C, Permatasari F A, Fukazawa H, et al. Direct synthesis of carbon quantum dots in aqueous polymer solution:One-pot reaction and preparation of transparent UV-blocking films[J]. Journal of Materials Chemistry A, 2017, 5(10):5187-5194
[50] Li S, Wang X, Hu R, et al. Near-infrared (NIR)-absorbing conjugated polymer dots as highly effective photothermal materials for in vivo cancer therapy[J]. Chemistry of Materials, 2016, 28(23):8669-8675
[51] Ke C, Fang C, Yan J, et al. Molecular engineering and design of semiconducting polymer dots with narrow-band, near-infrared emission for in vivo biological imaging[J]. ACS Nano, 2017, 11(3):3166-3177
[52] Hu S, Trinchi A, Atkin P, et al. Tunable photoluminescence across the entire visible spectrum from carbon dots excited by white light[J]. Angewandte Chemie International Edition, 2015, 54(10):2970-2974
[53] Dimos K. Tuning carbon dots' optoelectronic properties with polymers[J]. Polymers, 2018, doi:10.3390/polym10121312
[54] Ardekani S M, Dehghani A, Hassan M, et al. Two-photon excitation triggers combined chemo-photothermal therapy via doped carbon nanohybrid dots for effective breast cancer treatment[J]. Chemical Engineering Journal, 2017, 330:651-662
|