[1] Shadgan B, Macnab A J. Using near-infrared spectroscopy (NIRS) technology in a clinical setting to address an important issue[J]. J Trauma, 2008, 65(5):1205-1206
[2] Yamada K, Nomura Y, Citterio D, et al. Highly sodium-selective fluoroionophore based on conformational restriction of oligoethyleneglycol-bridged biaryl boron-dipyrromethene[J]. J Am Chem Soc, 2005, 127:6956-6957
[3] Baruach M, Qin W W, Valle'e R A, et al. A Highly potassium-selective ratio metric fluorescent indicator based on BODIPY azaerown ether excitable with visible light[J]. Org Lett, 2005, 7(20):4377-4380
[4] Namkung W, Padmawer P, Mills A D, et al. Cell-Based fluorescence screen for K+ channels and transporters using an extra-cellular triazacryptand-based K+ sensor[J]. J Am Chem Soc, 2008, 130:7794-7795
[5] Wang Y, Yu M, Yu Y, et al. A colorimetric and fluorescent turn-on chemo-sensor for Al3+ and its application in bio-imaging[J]. Tetrahedron Lett, 2009, 50:6169-6172
[6] Peng X, Du J, Fan J, et al. A selective fluorescent sensor for imaging Cd2+ in living cell[J]. J Am Chem Soc, 2007, 129:1500-1501
[7] Cheng T, Xu Y, Zhang S. A highly sensitive and selective OFF-ON fluorescent sensor for cadmium in aqueous solution and living cell[J]. J Am Chem Soc, 2008, 130(48):16160-16161
[8] Coskun A, Yilmaz M D, Akksya E U. Bis(2-pyridyl)-Substituted boratriazaindacene as an NIR-emitting chemosensor for Hg(II)[J]. Org Lett, 2007, 9(4):607-609
[9] Zhang X, Xiao Y, Qian X. A ratiometric fluorescent probe based on FRET for imaging Hg2+ ions in living cells[J]. Angew Chem Int Ed, 2008, 47(42):8025-8029
[10] Qi X, Jun E, Xu L, et al. New BODIPY derivatives as OFF-ON fluorescent chemosensor and fluorescent chemo-dosimeter for Cu2+:Cooperative selectivity enhancement toward Cu2+[J]. J Org Chem, 2006, 71(7):2881-2884
[11] Rurack K, Kollmannsberger M, Daub J. A highly efficient sensor molecule emitting in the near infrared (NIR):3,5-distyryl-8-(p-dimethylaminophenyl) difluoroboradiazas-indacene[J]. New J Chem, 2001, 25:289-292
[12] Baruah M, Qin W W, Basaric N, et al. BODIPY-Based hydroxyaryl derivatives as fluorescent pH probes[J]. J Org Chem, 2005, 70(10):4152-4157
[13] Han J Y, Loudet A, Barhoumi R. A ratiometric pH reporter for imaging protein-dye conjugates in living cells[J]. J Am Chem Soc, 2009, 131(5):1642-1643
[14] Lee C Y, Hupp J T. TiO2 sensitization with a bodipy-porphyrin antenna system[J]. Langmuir, 2010, 26(5):3760-3765
[15] Francis D S, Anu N A, Mohamed E E, et al. Control over photoinduced energy and electron transfer in supramolecular polyads of covalently linked azaBODIPY-bis porphyrin ‘Molecular clip’ hosting fullerene[J]. Journal of American Chemistry Society, 2012, 134(1):654-664
[16] Sule E M, Deniz Y, Burcak I, et al. A panchromatic boradiazaindacene (BODIPY) sensitizer for dye-sensitized solar cells[J]. Organic Letters, 2008, 10(15):3299-3302
[17] Safacan K O, Altan B, Yusuf C, et al. Optimization of distyryl-bodipy chromophores for efficient panchromatic sensitization in dye sensitized solar cells[J]. Chemical Science, 2011, 2(5):949-954
[18] Haugland R P. Handbook of fluorescent probes and research chemicals[M]. 6th Edition. Eugene (OR, USA):Molecular Probes, 1996
[19] Karolin J, Johansson L B A, Strand L, et al. Fluorescence and absorption spectroscopic properties of dipyrromethene-boron difluoride (BODIPY) derivatives in liquids, lipid membranes, and proteins[J]. Journal of the American Chemical Society, 1994, 116(17):7801-7806
[20] 刘秀军. 基于增加长波吸收的卟啉类敏化染料的设计及光电性能研究[D]. 天津:天津大学,2013 Liu Xiujun. Design and photoelectric properties of porphyrin sensitizers for increasing of long wavelength absorption[D]. Tianjin:Tianjin University, 2013(in Chinese)
[21] Zhang N, Feng Y, Li Y, et al. Synthesis and characterization of simple trans-AB-porphyrins for dye-sensitized solar cells[J]. New J Chem, 2013, 37(4):1134-1141
[22] Ye Y, Zhu L, Ma Y, et al. Synthesis and evaluation of new iRGD peptide analogs for tumor optical imaging[J]. Bioorganic & Medicinal Chemistry Letters, 2011, 21(4):1146-1150
[23] Sugahara K N, Teesalu T, Karmali P P, et al. Tissue-Penetrating delivery of compounds and nanoparticles into tumors[J]. Cancer Cell 2009, 16(6):510-520
[24] Sugahara K N, Teesalu T, Karmali P P, et al. Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs[J]. Science, 2010, 328(5981):1031-1035
|