[1] Ye W, Li Y, Kong L, et al. Feasibility of flue-gas desulfurization by manganese oxides[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(10):3089-3094
[2] Abdulrasheed A A, Jalil A A, Triwahyono S, et al. Surface modification of activated carbon for adsorption of SO2 and NOx: A review of existing and emerging technologies[J]. Renewable and Sustainable Energy Reviews, 2018, 94:1067-1085
[3] Arcibar-Orozco J A, Rangel-Mendez J R, Bandosz T J. Reactive adsorption of SO2 on activated carbons with deposited iron nanoparticles[J]. Journal of Hazardous Materials, 2013, 246/247:300-309
[4] 马双忱, 赵毅, 马宵颖, 等. 活性炭床加微波辐射脱硫脱硝的研究[J]. 热能动力工程, 2006, 21(4):338-341, 433 Ma Shuangchen, Zhao Yi, Ma Xiaoying, et al. A study of the desulfuration and denitration on active carbon beds provided with microwave irradiation[J]. Journal of Engineering for Thermal Energy and Power, 2006, 21(4):338-341, 433(in Chinese)
[5] 石清爱, 于才渊. 改性活性炭的烟气脱硫脱硝性能研究[J]. 化学工程, 2010, 38(10):106-109 Shi Qing'ai, Yu Caiyuan. Study on modified activated carbon for flue gas desulphurization and denitrification[J]. Chemical Engineering(China), 2010, 38(10):106-109(in Chinese)
[6] Mochida I, Korai Y, Shirahama M, et al. Removal of SOx and NOx over activated carbon fibers[J]. Carbon, 2000, 38(2):227-239
[7] Olson D G, Tsuji K, Shiraishi I. The reduction of gas phase air toxics from combustion and incineration sources using the MET-Mitsui-BF activated coke process[J]. Fuel Processing Technology, 2000, 65/66:393-405
[8] Silas K, Ghani W A W A K, Choong T S Y, et al. Breakthrough studies of Co3O4 supported activated carbon monolith for simultaneous SO2/NO removal from flue gas[J]. Fuel Processing Technology, 2018, 180:155-165
[9] Karatepe N, Orbak I·, Yavuz R, et al. Sulfur dioxide adsorption by activated carbons having different textural and chemical properties[J]. Fuel, 2008, 87(15/16):3207-3215
[10] Guo J, Liang J, Chu Y, et al. Desulfurization activity of nickel supported on acid-treated activated carbons[J]. Applied Catalysis A:General, 2012, 421/422:142-147
[11] 雷晶晶, 强敏, 杨娟娟, 等. 改性柱状活性焦用于烟气脱硫脱硝的研究[J]. 工业安全与环保, 2014, 40(7):92-95 Lei Jingjing, Qiang Min, Yang Juanjuan, et al. Study on desulfurization and denitrification by modified columnar activated-coke[J]. Industrial Safety and Environmental Protection, 2014, 40(7):92-95(in Chinese)
[12] Sousa J P S, Pereira M F R, Figueiredo J L. Modified activated carbon as catalyst for NO oxidation[J]. Fuel Processing Technology, 2013, 106:727-733
[13] 程尚增, 郭倩倩, 黄张根, 等. 纤维素制备渗氮炭材料用于脱除烟气中的SO2[J]. 高等学校化学学报, 2015, 36(6):1126-1132 Cheng Shangzeng, Guo Qianqian, Huang Zhanggen, et al. Cellulose generated carbon materials with nitrogen doping for the desulfurization of flue gas[J]. Chemical Journal of Chinese Universities, 2015, 36(6):1126-1132(in Chinese)
[14] Yan Z, Liu L, Zhang Y, et al. Activated semi-coke in SO2 removal from flue gas:Selection of activation methodology and desulfurization mechanism study[J]. Energy & Fuels, 2013, 27(6):3080-3089
[15] Shen W, Fan W. Nitrogen-Containing porous carbons:Synthesis and application[J]. J Mater Chem A, 2013, 1(4):999-1013
[16] Sun F, Liu J, Chen H, et al. Nitrogen-Rich mesoporous carbons:highly efficient, regenerable metal-free catalysts for low-temperature oxidation of H2S[J]. ACS Catalysis, 2013, 3(5):862-870
[17] Wiggins-Camacho J D, Stevenson K J. Effect of nitrogen concentration on capacitance, density of states, electronic conductivity, and morphology of N-doped carbon nanotube electrodes[J]. The Journal of Physical Chemistry C, 2009, 113(44):19082-19090
[18] Saidi W A. Oxygen reduction electrocatalysis using N-doped graphene quantum-dots[J]. The Journal of Physical Chemistry Letters, 2013, 4(23):4160-4165
[19] Lefèvre M, Dodelet J P, Bertrand P. O2 reduction in PEM fuel cells:Activity and active site structural information for catalysts obtained by the pyrolysis at high temperature of Fe precursors[J]. The Journal of Physical Chemistry B, 2000, 104(47):11238-11247
[20] Bouwkamp-Wijnoltz A L, Visscher W, van Veen J A R, et al. On active-site heterogeneity in pyrolyzed carbon-supported iron porphyrin catalysts for the electrochemical reduction of oxygen:An in situ Mössbauer study[J]. The Journal of Physical Chemistry B, 2002, 106(50):12993-13001
[21] Gao X, Liu S, Zhang Y, et al. Physicochemical properties of metal-doped activated carbons and relationship with their performance in the removal of SO2 and NO[J]. Journal of Hazardous Materials, 2011, 188(1/2/3):58-66
[22] Chu Y, Guo J, Liang J, et al. Ni supported on activated carbon as catalyst for flue gas desulfurization[J]. Science China Chemistry, 2010, 53(4):846-850
[23] Guo J, Liang J, Chu Y, et al. Influence of Ni species of Ni/AC catalyst on its desulfurization performance at low temperature[J]. Chinese Journal of Catalysis (Chinese Version), 2010, 31(3):278-282
[24] Sumathi S, Bhatia S, Lee K T, et al. Adsorption isotherm models and properties of SO2 and NO removal by palm shell activated carbon supported with cerium (Ce/PSAC)[J]. Chemical Engineering Journal, 2010, 162(1):194-200
[25] Dahlan I, Lee K T, Kamaruddin A H, et al. Sorption of SO2 and NO from simulated flue gas over rice husk ash (RHA)/CaO/CeO2 sorbent:Evaluation of deactivation kinetic parameters[J]. Journal of Hazardous Materials, 2011, 185(2/3):1609-1613
[26] Guo J, Liang J, Chu Y, et al. Desulfurization activity of nickel supported on acid-treated activated carbons[J]. Applied Catalysis A:General, 2012, 421/422:142-147
[27] Qu Y, Guo J, Chu Y, et al. The influence of Mn species on the SO2 removal of Mn-based activated carbon catalysts[J]. Applied Surface Science, 2013, 282:425-431
[28] Wu C, Song M, Jin B, et al. Adsorption of sulfur dioxide using nickel oxide/carbon adsorbents produced by one-step pyrolysis method[J]. Journal of Analytical and Applied Pyrolysis, 2013, 99:137-142
[29] Guo J, Fan L, Peng J, et al. Desulfurization activity of metal oxides blended into walnut shell based activated carbons[J]. Journal of Chemical Technology & Biotechnology, 2014, 89(10):1565-1575
[30] Liu X, Guo J, Chu Y, et al. Desulfurization performance of iron supported on activated carbon[J]. Fuel, 2014, 123:93-100
[31] Yi H, Zuo Y, Liu H, et al. Simultaneous removal of SO2, NO, and CO2 on metal-modified coconut shell activated carbon[J]. Water, Air, & Soil Pollution, 2014, doi:10.1007/s11270-014-1965-2
[32] Zuo Y, Yi H, Tang X. Metal-Modified active coke for simultaneous removal of SO2 and NOx from sintering flue gas[J]. Energy & Fuels, 2015, 29(1):377-383
[33] Chiu C H, Lin H, Kuo T, et al. Simultaneous control of elemental mercury/sulfur dioxide/nitrogen monoxide from coal-fired flue gases with metal oxide-impregnated activated carbon[J]. Aerosol and Air Quality Research, 2015, 15(5):2094-2103
[34] Yang L, Jiang X, Yang Z, et al. Effect of MnSO4 on the removal of SO2 by manganese-modified activated coke[J]. Industrial & Engineering Chemistry Research, 2015, 54(5):1689-1696
[35] Bai B, Lee C W, Lee Y S, et al. Metal impregnate on activated carbon fiber for SO2 gas removal:Assessment of pore structure, Cu supporter, breakthrough, and bed utilization[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2016, 509:73-79
[36] Rau J Y, Tseng H H, Chiang B C, et al. Evaluation of SO2 oxidation and fly ash filtration by an activated carbon fluidized-bed reactor:The effects of acid modification, copper addition and operating condition[J]. Fuel, 2010, 89(3):732-742
[37] Qu Y, Guo J, Chu Y, et al. The influence of Mn species on the SO2 removal of Mn-based activated carbon catalysts[J]. Applied Surface Science, 2013, 282:425-431
[38] Guo J, Qu Y, Shu S, et al. Effects of preparation conditions on Mn-based activated carbon catalysts for desulfurization[J]. New Journal of Chemistry, 2015, 39(8):5997-6015
[39] Liu Y, Qu Y, Guo J, et al. Thermal regeneration of manganese supported on activated carbons treated by HNO3 for desulfurization[J]. Energy & Fuels, 2015, 29(3):1931-1940
[40] Fan L, Jiang X, Jiang W, et al. Physicochemical properties and desulfurization activities of metal oxide/biomass-based activated carbons prepared by blending method[J]. Adsorption, 2014, 20(5/6):747-756
[41] Liu X, Guo J, Chu Y, et al. Desulfurization performance of iron supported on activated carbon[J]. Fuel, 2014, 123:93-100
[42] Guo J, Liu X, Luo D, et al. Influence of calcination temperatures on the desulfurization performance of Fe supported activated carbons treated by HNO3[J]. Industrial & Engineering Chemistry Research, 2015, 54(4):1261-1270
[43] Kante K, Deliyanni E, Bandosz T J. Interactions of NO2 with activated carbons modified with cerium, lanthanum and sodium chlorides[J]. Journal of Hazardous Materials, 2009, 165(1/2/3):704-713
[44] 周亚端, 向晓东, 熊友沛, 等. 金属氧化物组合改性活性焦脱硝性能的研究[J]. 环境工程, 2013, 31(3):90-92, 121 Zhou Yaduan, Xiang Xiaodong, Xiong Youpei, et al. Study on denitrification performance of modified activated coke by metal-oxides[J]. Environmental Engineering, 2013, 31(3):90-92, 121(in Chinese)
[45] 陈立杰, 王恩德, 苏永渤. 改性活性焦的制备及吸附性能研究[J]. 安全与环境学报, 2004, 4(4):73-75 Chen Lijie, Wang Ende, Su Yongbo. On how to prepare a kind of activated modified coke and its absorption capacity[J]. Journal of Safety and Environment, 2004, 4(4):73-75(in Chinese)
[46] 常连成, 肖军, 张辉, 等. 改性活性焦低温脱硝实验研究[J]. 太原理工大学学报, 2010, 41(5):593-597 Chang Liancheng, Xiao Jun, Zhang Hui, et al. Experimental study on denitrification by modified activated coke at low temperature[J]. Journal of Taiyuan University of Technology, 2010, 41(5):593-597(in Chinese)
[47] 李远涛, 易红宏, 唐晓龙, 等. Ni-Cu金属氧化物改性活性炭同时脱硫脱硝性能研究[J]. 工业安全与环保, 2017, 43(5):4-8 Li Yuantao, Yi Honghong, Tang Xiaolong, et al. Study on simultaneous desulfurization and denitrification of Ni-Cu metal oxide modified activated carbon[J]. Industrial Safety and Environmental Protection, 2017, 43(5):4-8(in Chinese)
[48] Pasel J, Käβner P, Montanari B, et al. Transition metal oxides supported on active carbons as low temperature catalysts for the selective catalytic reduction (SCR) of NO with NH3[J]. Applied Catalysis B:Environmental, 1998, 18(3/4):199-213
[49] Wang Y, Liu Z, Zhan L, et al. Performance of an activated carbon honeycomb supported V2O5 catalyst in simultaneous SO2 and NO removal[J]. Chemical Engineering Science, 2004, 59(22/23):5283-5290
[50] Zhu J, Wang Y, Zhang J, et al. Experimental investigation of adsorption of NO and SO2 on modified activated carbon sorbent from flue gases[J]. Energy Conversion and Management, 2005, 46(13/14):2173-2184
[51] 郭彦霞, 刘振宇, 李允梅, 等. 氨再生条件对V2O5/AC同时脱硫脱硝活性的影响[J]. 燃料化学学报, 2007, 35(3):344-348 Guo Yanxia, Liu Zhenyu, Li Yunmei, et al. NH3 regeneration of SO2-captured V2O5/AC catalyst-sorbent for simultaneous SO2 and NO removal[J]. Journal of Fuel Chemistry and Technology, 2007, 35(3):344-348(in Chinese)
[52] Ma J, Liu Z, Liu Q, et al. SO2 and NO removal from flue gas over V2O5/AC at lower temperatures:Role of V2O5 on SO2 removal[J]. Fuel Processing Technology, 2008, 89(3):242-248
[53] Sumathi S, Bhatia S, Lee K T, et al. Performance of an activated carbon made from waste palm shell in simultaneous adsorption of SOx and NOx of flue gas at low temperature[J]. Science in China Series E:Technological Sciences, 2009, 52(1):198-203
[54] Fan X, Zhang X. Simultaneous removal of SO2 and NO with activated carbon from sewage sludge modified by chitosan[J]. Applied Mechanics and Materials, 2012, 253/254/255:960-964
|