[1] Zhu Z, Liu Z, Liu S, et al. Fuel gas NOx removal by SCR with NH3 on CuO/AC at low temperatures[J]. Studies in Surface Science and Catalysis, 2000, 130: 1 385-1 390
[2] Zhu Z, Liu Z, Liu S, et al. A novel carbon-supported vanadium oxide catalyst for NO reduction with NH3 at low temperatures[J]. Applied Catalysis B: Environmental, 1999, 23(4): L229-L233
[3] Zhu Z, Liu Z, Niu H, et al. Promoting effect of SO2 on activated carbon supported vanadia catalyst for NO reduction by NH3 at low temperature[J]. Journal of Catalysis, 1999, 187(2): 245-248
[4] Huang Z, Liu Z, Zhang X, et al. Inhibition effect of H2O on V2O5/AC catalyst for catalytic reduction of NO with NH3 at low temperature[J]. Applied Catalysis B: Environmental, 2006, 63(3): 260-265
[5] Huang Z, Zhu Z, Liu Z. Combined effect of H2O and SO2 on V2O5/AC catalysts for NO reduction with ammonia at lower temperatures[J]. Applied Catalysis B: Environmental, 2002, 39(4): 361-368
[6] Pasel J, Kner P, Montanari B, et al. Transition metal oxides supported on active carbons as low temperature catalysts for the selective catalytic reduction(SCR) of NO with NH3[J]. Applied Catalysis B: Environmental, 1998, 18: 199-213
[7] 周愉千, 刘超, 宋鹏, 等. CeOx/AC催化剂NH3选择催化还原NO[J]. 环境工程学报, 2012, 6(8): 2 720-2 724 Zhou Yuqian, Liu Chao, Song Peng, et al. CeOx/AC catalysts for selective catalytic reduction of NO by NH3[J]. Chinese Journal of Environmental Engineering, 2012, 6(8): 2 720-2 724(in Chinese)
[8] Huang B, Huang R, Jin D, et al. Low temperature SCR of NO with NH3 over carbon nanotubes supported vanadium oxides[J]. Catalysis Today, 2007, 126(3): 279-283
[9] Bai S, Zhao J, Wang L, et al. SO2-Promoted reduction of NO with NH3 over vanadium molecularly anchored on the surface of carbon nanotubes[J]. Catalysis Today, 2010, 158(4): 393-400
[10] Bosch H, Janssen F. Formation and control of nitrogen oxides[J]. Catalysis Today, 1988, 2(4): 369-379
[11] Dumesic J A, Topse N Y, Topse H, et al. Kinetics of selective catalytic reduction of nitric oxide by ammonia over vanadia/titania[J]. Journal of Catalysis, 1996, 163(2): 409-417
[12] Knoblauch K, Richter E, Jüntgen H. Application of active coke in processes of SO2 and NOx-removal from flue gases[J]. Fuel, 1981, 60(9): 832-838
[13] Chen X, Gao S, Wang H, et al. Selective catalytic reduction of NO over carbon nanotubes supported CeO2[J]. Catalysis Communications, 2011, 14(1): 1-5
[14] Wang L, Huang B, Su Y, et al. Manganese oxides supported on multi-walled carbon nanotubes for selective catalytic reduction of NO with NH3: Catalytic activity and characterization[J]. Chemical Engineering Journal, 2012, 192: 232-241
[15] Zhuang K, Qiu J, Tang F, et al. The structure and catalytic activity of anatase and rutile titania supported manganese oxide catalysts for selective catalytic reduction of NO by NH3[J]. Physical Chemistry Chemical Physics, 2011, 13(10): 4 463-4 469
[16] Tang X, Hao J, Yi H, et al. Low-Temperature SCR of NO with NH3 over AC/C supported manganese-based monolithic catalysts[J]. Catalysis Today, 2007, 126(4): 406-411
[17] Wang X, Zheng Y, Lin J. Highly dispersed Mn-Ce mixed oxides supported on carbon nanotubes for low-temperature NO reduction with NH3[J]. Catalysis Communications, 2013, 37: 96-99
[18] 沈伯雄, 史展亮, 郭宾彬, 等. CeO2/ACFN和MnOx/ACFN低温选择性催化还原NO研究[J]. 洁净煤技术, 2007, 13(1): 32-35 Shen Boxiong, Shi Zhanliang, Guo Binbin, et al. Low-Temperature selective catalytic reductionof NO by CeO2/ACFN and MnOx/ACFN[J]. Clean Coal Technology, 2007, 13(1): 32-35(in Chinese)
[19] 沈伯雄, 郭宾彬, 史展亮, 等. CeO2/ACF的低温SCR烟气脱硝性能研究[J]. 燃料化学学报, 2007, 35(1): 125-128 Shen Boxiong, Guo Binbin, Shi Zhanliang, et al. Low temperature SCR of NO in flue gas on CeO2/ACF[J]. Journal of Fuel Chemistry and Technology, 2007, 35(1): 125-128(in Chinese)
[20] 侯亚芹, 黄张根, 马建蓉. V2O5/ACF催化剂用于烟气低温脱硝的研究[J]. 环境化学, 2009, 28(1): 26-30 Hou Yaqin, Huang Zhanggen, Ma Jianrong. Study on the activities of V2O5/ACF catalyst for the catalytic reduction of no at low temperature[J]. Environmental Chemistry, 2009, 28(1): 26-30(in Chinese)
[21] Hou Y, Huang Z, Guo S. Effect of SO2 on V2O5/ACF catalysts for NO reduction with NH3 at low temperature[J].Catalysis Communications,2009,10(11): 1 538-1 541
[22] 侯亚芹, 黄张根, 马建蓉. V2O5/ACF催化剂低温下选择性催化还原NO的机理[J]. 催化学报, 2009, 30(10): 1 007-1 011 Hou Yaqin, Huang Zhanggen, Ma Jianrong. Mechanism of selective catalytic reduction of no at low temperatureover V2O5/ACF catalysts[J]. Chinese Journal of Catalysis, 2009, 30(10): 1 007-1 011(in Chinese)
[23] Liu L, Liu Z, Huang Z, et al. Preparation of activated carbon honeycomb monolith directly from coal[J]. Carbon, 2006, 44: 1 598-1 601
[24] Wang Y, Huang Z, Liu Z, et al. A novel activated carbon honeycomb catalyst for simultaneous SO2 and NO removal at low temperatures[J]. Carbon, 2004, 42(2): 445-448
[25] Valdés-Solís T, Marbán G, Fuertes A B. Low-Temperature SCR of NOx with NH3 over carbon-ceramic cellular monolith-supported manganese oxides[J]. Catalysis Today, 2001, 69(1): 259-264
[26] Valdés-Solís T, Marbán G, Fuertes A B. Low-Temperature SCR of NOx with NH3 over carbon-ceramic supported catalysts[J]. Applied Catalysis B: Environmental, 2003, 46(2): 261-271
[27] García-Bordejé E, Pinilla J L, Lázaro M J, et al. Role of sulphates on the mechanism of NH3-SCR of NO at low temperatures over presulphated vanadium supported on carbon-coated monoliths[J]. Journal of Catalysis, 2005, 233(1): 166-175
[28] Ouzzine M, Cifredo G A, Gatica J M, et al. Original carbon-based honeycomb monoliths as support of Cu or Mn catalysts for low-temperature SCR of NO: Effects of preparation variables[J]. Applied Catalysis A: General, 2008, 342(1/2): 150-158
[29] Wang Y, Huang Z, Liu Z, et al. Performance of an activated carbon honeycomb supported V2O5 catalyst in simultaneous SO2 and NO removal[J]. Chemical Engineering Science, 2004, 59(22/23): 5 283-5 290
[30] Tang X, Hao J, Xu W, et al. Low temperature selective catalytic reduction of NOx with NH3 over amorphous MnOx catalysts prepared by three methods[J]. Catalysis Communications, 2007, 8(3): 329-334
[31] 王艳莉, 刘振宇, 黄张根, 等. 载体预处理对蜂窝状V2O5/ACH低温脱硫脱硝活性的影响[J]. 新型炭材料, 2004, 21(3): 179-185 Wang Yanli, Liu Zhenyu, Huang Zhanggen, et al. Effect of pretreatment on simultaneous SO2 and NO removal activity over activated carbon honeycomb supported V2O5 catalysts at low temperatures[J]. New Carbon Materials, 2004, 21(3): 179-185(in Chinese)
[32] 王邓军. 蜂窝状活性炭担载Mn基氧化物用于NO的低温催化还原[D]. 上海:华东理工大学, 2011
[33] 王艳莉, 李翠, 詹亮, 等. 制备条件对蜂窝状MnOx/ACH催化剂低温脱硝性能的影响[J]. 华东理工大学学报: 自然科学版, 2013, 39(5): 509-515 Wang Yanli, Li Cui, Zhan Liang, et al. Effect of preparation condition on NO removal activity over activated carbon honeycomb supported MnOx catalyst[J]. Journal of East China University of Science and Technology: Natural Science Edition, 2013, 39(5): 509-515(in Chinese)
[34] Wang Y, Ge C , Zhan L, et al. MnOx-CeO2/Activated carbon honeycomb catalyst for selective catalytic reduction of NO with NH3 at low temperatures[J]. Industrial & Engineering Chemistry Research, 2012, 51(36): 11 667-11 673
[35] Wang Y, Li X , Zhan L, et al. Effect of SO2 on activated carbon honeycomb supported CeO2-MnOx catalyst for NO removal at low temperature[J]. Industrial & Engineering Chemistry Research, 2015, 54(8): 2 274-2 278
[36] 王艳莉, 李晓晓, 詹亮, 等.金属助剂对蜂窝状MnOx-CeO2/ACH催化剂低温脱硝行为的影响[J]. 燃料化学学报, 2014, 42(11): 1 365-1 371 Wang Yanli, Li Xiaoxiao, Zhan Liang, et al. Effect of metal additives on the catalytic performance of MnOx-CeO2 supported on activated carbon honeycomb in NO removal at low temperature[J]. Journal of Fuel Chemistry and Technology, 2014, 42(11): 1 365-1 371(in Chinese)
|