[1] POIZOT P, GAUBICHER J, RENAULT S, et al. Opportunities and challenges for organic electrodes in electrochemical energy storage[J]. Chemical Reviews, 2020, 120(14):6490-6557 [2] ZHENG S, WANG Q, HOU Y, et al. Recent progress and strategies toward high performance zinc-organic batteries[J]. Journal of Energy Chemistry, 2021, 63:87-112 [3] LOPES P P, STAMENKOVIC V R. Past, present, and future of lead-acid batteries[J]. Science, 2020, 369(6506):923-924 [4] WANG S, YANG Y, DONG Y, et al. Recent progress in Ti-based nanocomposite anodes for lithium ion batteries[J]. Journal of Advanced Ceramics, 2019, 8(1):1-18 [5] VERMA V, KUMAR S, MANALASTAS W J, et al. Progress in rechargeable aqueous zinc- and aluminum-ion battery electrodes:Challenges and outlook[J]. Advanced Sustainable Systems, 2019, doi:10.1002/adsu.201800111 [6] LI C, XIE X, LIANG P, et al. Issues and future perspective on zinc metal anode for rechargeable aqueous zinc-ion batteries[J]. Energy & Environmental Materials, 2020, 3(2):146-159 [7] TANG B, SHAN L, LIANG S, et al. Issues and opportunities facing aqueous zinc-ion batteries[J]. Energy & Environmental Science, 2019, 12(11):3288-3304 [8] MATHEW V, SAMBANDAM B, KIM S, et al. Manganese and vanadium oxide cathodes for aqueous rechargeable zinc-ion batteries:A focused view on performance, mechanism, and developments[J]. ACS Energy Letters, 2020, 5(7):2376-2400 [9] HENG Y, GU Z, GUO J, et al. Research progresses on vanadium-based cathode materials for aqueous zinc-ion batteries[J]. Acta Physico Chimica Sinica, 2020, doi:10.3866/PKU.WHXB202005013 [10] WAN F, ZHOU X, LU Y, et al. Energy storage chemistry in aqueous zinc metal batteries[J]. ACS Energy Letters, 2020, 5(11):3569-3590 [11] LI D, LIU P, ZHAO D, et al. Molecular engineering on MoS2 enables large interlayers and unlocked basal planes for high-performance aqueous Zn-ion storage[J]. Angewandte Chemie International Edition, 2021, 60(37):20286-20293 [12] JIA H, QIU M, TAWIAH B, et al. Interlayer-expanded MoS2 hybrid nanospheres with superior zinc storage behavior[J]. Composites Communications, 2021, doi:10.1016/j.coco.2021.100841 [13] KASIRI G, GLENNEBERG J, BANI HASHEMI A, et al. Mixed copper-zinc hexacyanoferrates as cathode materials for aqueous zinc-ion batteries[J]. Energy Storage Materials, 2019, 19:360-369 [14] CUI J, GUO Z, YI P, et al. Organic cathode materials for rechargeable zinc batteries:Mechanisms, challenges, and perspectives[J]. ChemSusChem, 2020, 13(9):2160-2185 [15] LIU S, KANG L, KIM J, et al. Recent advances in vanadium-based aqueous rechargeable zinc-ion batteries[J]. Advanced Energy Materials, 2020, doi:10.1002/aenm.202000477 [16] SONG M, TAN H, CHAO D, et al. Recent advances in Zn-ion batteries[J]. Advanced Functional Materials, 2018, doi:10.1002/adfm.201802564 [17] LU Y, ZHANG Q, LI L, et al. Design strategies toward enhancing the performance of organic electrode materials in metal-ion batteries[J]. Chem, 2018, 4(12):2786-2813 [18] XU D, LIANG M, QI S, et al. The progress and prospect of tunable organic molecules for organic lithium-ion batteries[J]. ACS Nano, 2021, 15(1):47-80 [19] TIE Z, NIU Z. Design strategies for high-performance aqueous Zn/organic batteries[J]. Angewandte Chemie (International Ed in English), 2020, 59(48):21293-21303 [20] SHEA J J, LUO C. Organic electrode materials for metal ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(5):5361-5380 [21] WAN F, ZHANG L, WANG X, et al. An aqueous rechargeable zinc-organic battery with hybrid mechanism[J]. Advanced Functional Materials, 2018, doi:10.1002/adfm.201804975 [22] WANG J, LIU J, HU M, et al. A flexible, electrochromic, rechargeable Zn//PPy battery with a short circuit chromatic warning function[J]. Journal of Materials Chemistry A, 2018, 6(24):11113-11118 [23] BIN D, HUO W, YUAN Y, et al. Organic-inorganic-induced polymer intercalation into layered composites for aqueous zinc-ion battery[J]. Chem, 2020, 6(4):968-984 [24] ZHANG Z, XI B, WANG X, et al. Oxygen defects engineering of VO2·xH2O nanosheets via in situ polypyrrole polymerization for efficient aqueous zinc ion storage[J]. Advanced Functional Materials, 2021, doi:10.1002/adfm.202103070 [25] HUANG J, WANG Z, HOU M, et al. Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery[J]. Nature Communications, 2018, 9(1):1-8 [26] WANG Y, WANG C, NI Z, et al. Binding zinc ions by carboxyl groups from adjacent molecules toward long-life aqueous zinc-organic batteries[J]. Advanced Materials, 2020, doi:10.1002/adma.202000338 [27] ZHAO Q, HUANG W, LUO Z, et al. High-capacity aqueous zinc batteries using sustainable quinone electrodes[J]. Science Advances, 2018, doi:10.1126/sciadv.aao1761 [28] GUO D, MA D, DONG D, et al. An environmentally friendly and flexible aqueous zinc battery using an organic cathode[J]. Angewandte Chemie International Edition, 2018, 57(36):11737-11741 [29] SUN T, LI Z, ZHI Y, et al. Poly(2, 5-dihydroxy-1, 4-benzoquinonyl sulfide) as an efficient cathode for high-performance aqueous zinc-organic batteries[J]. Advanced Functional Materials, 2021, doi:10.1002/adfm.202010049 [30] WANG C, HE T, CHENG J, et al. Bioinspired interface design of sewable, weavable, and washable fiber zinc batteries for wearable power textiles[J]. Advanced Functional Materials, 2020, doi:10.1002/adfm.202004430 [31] ZHANG S, ZHAO P, LI H, et al. Cross-conjugated polycatechol organic cathode for aqueous zinc-ion storage[J]. ChemSusChem, 2020, 13(1):188-195 [32] WANG Q, LIU Y, CHEN P. Phenazine-based organic cathode for aqueous zinc secondary batteries[J]. Journal of Power Sources, 2020, doi:10.1016/j.jpowsour.2020.228401 [33] ZHANG H, XIE S, CAO Z, et al. Extended π-conjugated system in organic cathode with active C═N bonds for driving aqueous zinc-ion batteries[J]. ACS Applied Energy Materials, 2021, 4(1):655-661 [34] YE Z, XIE S, CAO Z, et al. High-rate aqueous zinc-organic battery achieved by lowering HOMO/LUMO of organic cathode[J]. Energy Storage Materials, 2021, 37:378-386 [35] ZHANG S, LONG S, LI H, et al. A high-capacity organic cathode based on active N atoms for aqueous zinc-ion batteries[J]. Chemical Engineering Journal, 2020, doi:10.1016/j.cej.2020.125898 [36] 王时雨, 李明华, 薛姗姗, 等. 氮氧自由基的应用研究进展[J]. 化学通报, 2017, 80(11):1002-1008 WANG Shiyu, LI Minghua, XUE Shanshan, et al. Progress in application of nitroxide radicals[J]. Chemistry, 2017, 80(11):1002-1008(in Chinese) [37] ZHU J, ZHU T, TUO H, et al. TEMPO-contained polymer grafted onto graphene oxide via click chemistry as cathode materials for organic battery[J]. Macromolecular Chemistry and Physics, 2020, doi:10.1002/macp.202000160 [38] LI Y, JIAN Z, LANG M, et al. Covalently functionalized graphene by radical polymers for graphene-based high-performance cathode materials[J]. ACS Applied Materials & Interfaces, 2016, 8(27):17352-17359 [39] HANSEN K A, NERKAR J, THOMAS K, et al. New spin on organic radical batteries-an isoindoline nitroxide-based high-voltage cathode material[J]. ACS Applied Materials & Interfaces, 2018, 10(9):7982-7988 [40] KOSHIKA K, SANO N, OYAIZU K, et al. An ultrafast chargeable polymer electrode based on the combination of nitroxide radical and aqueous electrolyte[J]. Chemical Communications (Cambridge, England), 2009(7):836-838 [41] LUO Y, ZHENG F, LIU L, et al. A high-power aqueous zinc-organic radical battery with tunable operating voltage triggered by selected anions[J]. ChemSusChem, 2020, 13(9):2239-2244 [42] GU S, WU S, CAO L, et al. Tunable redox chemistry and stability of radical intermediates in 2D covalent organic frameworks for high performance sodium ion batteries[J]. Journal of the American Chemical Society, 2019, 141(24):9623-9628 [43] ZHOU D, NI J, LI L. Self-supported multicomponent CPO-27 MOF nanoarrays as high-performance anode for lithium storage[J]. Nano Energy, 2019, 57:711-717 [44] LI C, LIU L, KANG J, et al. Pristine MOF and COF materials for advanced batteries[J]. Energy Storage Materials, 2020, 31:115-134 [45] WADA K, SAKAUSHI D K, SASAKI P S, et al. Multielectron-transfer-based rechargeable energy storage of two-dimensional coordination frameworks with non-innocent ligands[J]. Angewandte Chemie International Edition, 2018, 57(29):8886-8890 [46] HALDAR S, ROY K, NANDI S, et al. High and reversible lithium ion storage in self-exfoliated triazole-triformyl phloroglucinol-based covalent organic nanosheets[J]. Advanced Energy Materials, 2018, doi:10.1002/aenm.201702170 [47] ABDUL K M, GHOSH M, VIJAYAKUMAR V, et al. Zinc ion interactions in a two-dimensional covalent organic framework based aqueous zinc ion battery[J]. Chemical Science, 2019, 10(38):8889-8894 [48] WANG W, KALE V S, CAO Z, et al. Phenanthroline covalent organic framework electrodes for high-performance zinc-ion supercapattery[J]. ACS Energy Letters, 2020, 5(7):2256-2264 [49] NAM K W, PARK S S, DOS REIS R, et al. Conductive 2D metal-organic framework for high-performance cathodes in aqueous rechargeable zinc batteries[J]. Nature Communications, 2019, doi:10.1038/s41467-019-12857-4 [50] BRAVEENTH R, RAAGULAN K, LEE L R, et al. Fluorene core with several modification by using donor type triphenylamine and carbazole derivatives for organic light emitting diodes[J]. Dyes and Pigments, 2021, doi:10.1016/j.dyepig.2021.109562 [51] HAN L, CHEN Q, YU H, et al. Triphenylamine dyes bearing 4-phenyl-2-(thiophen-2-yl)thiazole bridge for dye sensitized solar cells[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2021, doi:10.1016/j.jphotochem.2021.113341 [52] CHOI J, KIM E S, KO J H, et al. Hollow and microporous triphenylamine networks post-modified with TCNE for enhanced organocathode performance[J]. Chemical Communications (Cambridge, England), 2017, 53(62):8778-8781 [53] HUANG W, JIA T, ZHOU G, et al. A triphenylamine-based polymer with anthraquinone side chain as cathode material in lithium ion batteries[J]. Electrochimica Acta, 2018, 283:1284-1290 [54] CHEN S, JIA T, ZHOU G, et al. A cross-linked triphenylamine-based polymer cathode material with dual anion-cation reversible insertion for lithium ion battery[J]. Journal of the Electrochemical Society, 2019, 166(12):A2543-A2548 [55] GLATZ H, LIZUNDIA E, PACIFICO F, et al. An organic cathode based dual-ion aqueous zinc battery enabled by a cellulose membrane[J]. ACS Applied Energy Materials, 2019, 2(2):1288-1294 [56] ZHANG H, ZHONG L, XIE J, et al. A COF-like N-rich conjugated microporous polytriphenylamine cathode with pseudocapacitive anion storage behavior for high-energy aqueous zinc dual-ion batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2021, doi:10.1002/adma.202101857
|