[1] Zhang L, Pang J, Chen X, et al. Carbon emissions, energy consumption and economic growth:Evidence from the agricultural sector of China's main grain-producing areas[J]. Science of the Total Environment, 2019, 665:1017-1025
[2] Guo J, Liu J. A binder-free electrode architecture design for lithiumsulfur batteries:A review[J]. Nanoscale Adv, 2019, 1(6):2104-2122
[3] Dehghani-Sanij A R, Tharumalingam E, Dusseault M B, et al. Study of energy storage systems and environmental challenges of batteries[J]. Renewable & Sustainable Energy Reviews, 2019, 104:192-208
[4] Winter M, Barnett B, Xu K. Before Li ion batteries[J]. Chem Rev, 2018, 118(23):11433-11456
[5] Abu-Hamdeh N, Alnefaie K. Techno-Economic comparison of solar power tower system/photovoltaic system/wind turbine/diesel generator in supplying electrical energy to small loads[J]. Journal of Taibah University for Science, 2019, 13(1):216-224
[6] Huang T, Song D, Liu L, et al. Cobalt recovery from the stripping solution of spent lithium-ion battery by a three-dimensional microbial fuel cell[J]. Separation and Purification Technology, 2019, 215:51-61
[7] Park M, Kim J, Kim Y J, et al. ChemInform abstract:Recent advances in rechargeable magnesium battery technology:A review of the field's current status and prospects[J]. Israel Journal of Chemistry (Online), 2015, doi:10.1002/ijch.201400174
[8] Song M, Tan H, Chao D, et al. Recent advances in Zn-ion batteries[J]. Advanced Functional Materials, 2018, doi:10.1002/adfm.201802564
[9] Ming J, Guo J, Xia C, et al. Zinc-Ion batteries:Materials, mechanisms, and applications[J]. Materials Science & Engineering R-Reports, 2019, 135:58-84
[10] Zhou L, Liu Q, Zhang Z, et al. Interlayer-Spacing-Regulated VOPO4 nanosheets with fast kinetics for high-capacity and durable rechargeable magnesium batteries[J]. Advanced Materials, 2018, doi:10.1002/adma.201801984
[11] Wan F, Zhang Y, Zhang L, et al. Reversible oxygen redox chemistry in aqueous zinc-ion batteries[J]. Angewandte Chemie(International ed in English), 2019, 58(21):7062-7067
[12] Zhang N, Dong Y, Jia M, et al. Rechargeable aqueous Zn-V2O5 battery with high energy density and long cycle life[J]. ACS Energy Letters, 2018, 3(6):1366-1372
[13] Ma N, Wu P, Wu Y, et al. Progress and perspective of aqueous zinc ion battery[J]. Functional Materials Letters, 2019, doi:10.1142/S1793604719300032
[14] Li Y, Huang Z, Kalambate P K, et al. V2O5 nanopaper as a cathode material with high capacity and long cycle life for rechargeable aqueous zinc-ion battery[J]. Nano Energy, 2019, 60:752-759
[15] Liu P, Zhu K, Gao Y, et al. Recent progress in the applications of vanadium-based oxides on energy storage:from low-dimensional nanomaterials synthesis to 3D micro/nano-structures and free-standing electrodes fabrication[J]. Advanced Energy Materials, 2017, doi:10.1002/aenm.201700547
[16] Fang G, Zhou J, Pan A, et al. Recent advances in aqueous zinc-ion batteries[J]. Acs Energy Letters, 2018, 3(10):2480-2501
[17] Yan M, He P, Chen Y, et al. Water-Lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries[J]. Advanced Materials, 2018, doi:10.1002/adma.201703725
[18] Xia C, Guo J, Li P, et al. Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode[J]. Angewandte Chemie-International Edition, 2018, 57(15):3943-3948
[19] Qin H, Chen L, Wang L, et al. V2O5 hollow spheres as high rate and long life cathode for aqueous rechargeable zinc ion batteries[J]. Electrochimica Acta, 2019, 306:307-316
[20] Xu D, Wang H, Li F, et al. Conformal conducting polymer shells on V2O5Nanosheet arrays as a high-rate and stable zinc-ion battery cathode[J]. Advanced Materials Interfaces, 2019, doi:10.1002/admi.201801506
[21] Zhou J, Shan L, Wu Z, et al. Investigation of V2O5 as a low-cost rechargeable aqueous zinc ion battery cathode[J]. Chemical Communications, 2018, 54(35):4457-4460
[22] Chen D, Rui X, Zhang Q, et al. Persistent zinc-ion storage in mass-produced V2O5 architectures[J]. Nano Energy, 2019, 60:171-178
[23] Yang Y, Tang Y, Fang G, et al. Li+ions intercalated V2O5·nH2O with enlarged layered spacing and fast ions diffusion as aqueous zinc ion battery cathode[J].Energy & Environmental Science,2018,doi:10.1039/C8EE01651H
[24] He P, Zhang G, Liao X, et al. Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries[J]. Advanced Energy Materials, 2018, doi:10.1002/aenm.20170246
[25] Kundu D, Adams B D, Duffort V, et al. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode[J]. Nature Energy, 2016, doi:10.1038/nenergy.2016.119
[26] Ming F, Liang H, Lei Y, et al. Layered MgxV2O5 center dot nH2O as cathode material for high-performance aqueous zinc ion batteries[J]. ACS Energy Letters, 2018, 3(10):2602-2609
[27] Hu P, Yan M, Zhu T, et al. Zn/V2O5 Aqueous hybrid-ion battery with high voltage platform and long cycle life[J]. Acs Applied Materials & Interfaces, 2017, 9(49):42717-42722
[28] He P, Quan Y, Xu, et al. High-Performance aqueous zinc-ion battery based on layered H2V3O8 nanowire cathode[J]. Small, 2017, doi:10.1002/smll.201702551
[29] Pang Q, Sun C, Yu Y, et al. H2V3O8 nanowire/graphene electrodes for aqueous rechargeable zinc ion batteries with high rate capability and large capacity[J]. Advanced Energy Materials, 2018, doi:10.1002/aenm.201800144
[30] Oka Y, Yao T, Yamamoto N. Structure determination of H2V3O8 by powder X-ray diffraction[J]. Journal of Solid State Chemistry, 1990, 89(2):372-377
[31] Shen C, Li X, Li N, et al. Graphene-Boosted, high-performance aqueous Zn-ion battery[J]. ACS Applied Materials & Interfaces, 2018, doi:10(30):25446-25453
[32] Shin J, Choi D S, Lee H J, et al. Hydrated intercalation for high-performance aqueous zinc ion batteries[J]. Advanced Energy Materials, 2019, doi:10.1002/aenm.201900083
[33] Wei T, Li Q, Yang G, et al. An electrochemically induced bilayered structure facilitates long-life zinc storage of vanadium dioxide[J]. Journal of Materials Chemistry A, 2018, 6(17):8006-8012
[34] Islam S, Alfaruqi M H, Sambandam B, et al. A new rechargeable battery based on zinc anode and NaV6O15 nanorod cathode[J]. Chemical Communications, 2019, doi:10.1039/C9CC00897G
[35] Alfaruqi M H, Mathew V, Song J J, et al. Electrochemical zinc intercalation in lithium vanadium oxide:a high-capacity zinc-ion battery cathode[J]. Chemistry of Materials, 2017, 29(4):1684-1694
[36] Hu P, Zhu T, Wang X, et al. Highly durable Na2V6O16·1.63H2O nanowire cathode for aqueous zinc-ion battery[J]. Nano Letters, 2018, 18(3):1758-1763
[37] Tang B, Fang G, Zhou J, et al. Potassium vanadates with stable structure and fast ion diffusion channel as cathode for rechargeable aqueous zinc-ion batteries[J]. Nano Energy, 2018, 51:579-587
[38] Sambandam B, Soundharrajan V, Kim S, et al. Aqueous rechargeable Zn-ion battery:An imperishable and high-energy Zn2V2O7 nanowire cathode through intercalation regulation[J]. Journal of Materials Chemistry A, 2018, doi:10.1039/C7TA11237H
[39] Liu X, Zhang H, Geiger D, et al. Calcium vanadate sub-microfibers as highly reversible host cathode material for aqueous zinc-ion batteries[J]. Chemical Communications, 2019, 55(16):2265-2068
[40] Li G, Yang Z, Jiang Y, et al. Towards polyvalent ion batteries:A zinc-ion battery based on NASICON structured Na3V2(PO4)3[J]. Nano Energy, 2016, 25:211-217
[41] Li G, Yang Z, Jiang Y, et al. Hybrid aqueous battery based on Na3V2(PO4)3/C cathode and zinc anode for potential large-scale energy storage[J]. Journal of Power Sources, 2016, 308:52-57
[42] Hu P, Zhu T, Wang X, et al. Aqueous Zn//Zn(CF3SO3)(2)//Na3V2(PO4)(3) batteries with simultaneous Zn2+/Na+ intercalation/de-intercalation[J]. Nano Energy, 2019, 58:492-508
[43] Islam S, Alfaruqi M H, Putro D, et al. Pyrosynthesis of Na3V2 (PO4)3@C cathodes for safe and low-cost aqueous hybrid batteries[J]. ChemSusChem, 2018, 11(13):2239-2247
[44] Qin H, Yang Z, Chen L, et al. A high-rate aqueous rechargeable zinc ion battery based on VS4@rGO nanocomposite[J]. Journal of Materials Chemistry A, 2018, doi:10.1039/C8TA08133F
[45] He P, Yan M, Zhang G, et al. Layered VS2 nanosheet-based aqueous Zn ion battery cathode[J]. Advanced Energy Materials, 2017, doi:10.1002/aenm.201601920
[46] Peng Z, Wei Q, Tan S, et al. Novel layered iron vanadate cathode for high-capacity aqueous rechargeable zinc batteries[J]. Chemical Communications, 2018, 54(32):4041-4044
[47] Jo J H, Sun Y, Myung S T. Hollandite-Type Al-doped VO1.52(OH)(0.77) as a zinc ion insertion host material[J]. Journal of Materials Chemistry A, 2017, 5(18):8367-8375
[48] Kaveevivitchai W, Manthiram A. High-Capacity zinc-ion storage in an open-tunnel oxide for aqueous and nonaqueous Zn-ion batteries[J]. Journal of Materials Chemistry A, 2016, doi:10.1039/C6TA07747A
[49] Xia C, Guo J, Lei Y, et al. Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode[J]. Advanced Materials, 2017, doi:10.1002/adma.201705580
|