[1] KIM H S, JEON Y, KIM J H, et al. Characteristics of Sr1-xYxTi1-yRuyO3+/-δ and Ru-impregnated Sr1-xYxTiO3+/-δ perovskite catalysts as SOFC anode for methane dry reforming[J]. Applied Surface Science, 2020, doi: 10.1016/j.apsusc.2020.145450 [2] SUN X, LIU Y, HENDRIKSEN P V, et al. An operation strategy for mitigating the degradation of solid oxide electrolysis cells for syngas production[J]. Journal of Power Sources, 2021, doi: 10.1016/j.jpowsour.2021.230136 [3] RAJ N T, INIYAN S, GOIC R. A review of renewable energy based cogeneration technologies[J]. Renewable and Sustainable Energy Reviews, 2011, 15(8): 3640-3648 [4] BAEK J D, LIU K, SU P. A functional micro-solid oxide fuel cell with a 10 nm-thick freestanding electrolyte[J]. Journal of Materials Chemistry A, 2017, 5(35): 18414-18419 [5] LYU Z, SHI W, HAN M. Electrochemical characteristics and carbon tolerance of solid oxide fuel cells with direct internal dry reforming of methane[J]. Applied Energy, 2018, 228: 556-567 [6] QIU P, SUN S, YANG X, et al. A review on anode on-cell catalyst reforming layer for direct methane solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2021, 46(49): 25208-25224 [7] PAKHARE D, SPIVEY J. A review of dry (CO2) reforming of methane over noble metal catalysts[J]. Chemical Society Reviews, 2014, 43(22): 7813-7837 [8] METTE K, KÜHL S, TARASOV A, et al. High-temperature stable Ni nanoparticles for the dry reforming of methane[J]. ACS Catalysis, 2016, 6(10): 7238-7248 [9] LIU J, LIN C, YAO H, et al. Construction of high-proportion ternary dual Z-scheme Co3O4/NiCo2O4/NiO photocatalytic system via incomplete solid phase chemical reactions of Co(OH)2 and Ni(OH)2 for organic pollutant degradation with simultaneous hydrogen production[J]. Journal of Power Sources, 2021, doi: 10.1016/j.jpowsour.2021.230159 [10] BHAVANI A G, KIM W Y, LEE J S. Barium substituted lanthanum manganite perovskite for CO2 reforming of methane[J]. ACS Catalysis, 2013, 3(7): 1537-1544 [11] YE L, ZHANG M, HUANG P, et al. Enhancing CO2 electrolysis through synergistic control of non-stoichiometry and doping to tune cathode surface structures[J]. Nature Communications, 2017, doi:10.1038/ncomms14785 [12] ZHAO Z, WANG X, TANG S, et al. High-performance oxygen electrode Ce0.9Co0.1O2-δ-LSM-YSZ for hydrogen production by solid oxide electrolysis cells[J]. International Journal of Hydrogen Energy, 2021, 46(50): 25332-25340 [13] MENG X, GONG X, YANG N, et al. Carbon-resistant Ni-YSZ/Cu-CeO2-YSZ dual-layer hollow fiber anode for micro tubular solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2014, 39(8): 3879-3886 [14] BABAIE RIZVANDI O, MIAO X Y, FRANDSEN H L. Multiscale modeling of degradation of full solid oxide fuel cell stacks[J]. International Journal of Hydrogen Energy, 2021, 46(54): 27709-27730 [15] WEI H, XIE K, ZHANG J, et al. In situ growth of NixCu1-x alloy nanocatalysts on redox-reversible rutile (Nb, Ti)O4 towards high-temperature carbon dioxide electrolysis[J]. Scientific Reports, 2014, doi: 10.1038/srep05156 [16] 康丁文. Cu/Ni-LSCM复合阳极多孔结构抗积碳性能研究[D]. 昆明: 昆明理工大学, 2019 [17] NI M. Modeling and parametric simulations of solid oxide fuel cells with methane carbon dioxide reforming[J]. Energy Conversion and Management, 2013, 70: 116-129 [18] GOKON N, OSAWA Y, NAKAZAWA D, et al. Kinetics of CO2 reforming of methane by catalytically activated metallic foam absorber for solar receiver-reactors[J]. International Journal of Hydrogen Energy, 2009, 34(4): 1787-1800 [19] ZAVARUKHIN S G, KUVSHINOV G G. The kinetic model of formation of nanofibrous carbon from CH4-H2 mixture over a high-loaded nickel catalyst with consideration for the catalyst deactivation[J]. Applied Catalysis A: General, 2004, 272(1/2): 219-227 [20] KRISHNA R, WESSELINGH J A. The Maxwell-Stefan approach to mass transfer[J]. Chemical Engineering Science, 1997, 52(6): 861-911 [21] VURAL Y, MA L, INGHAM D B, et al. Comparison of the multicomponent mass transfer models for the prediction of the concentration overpotential for solid oxide fuel cell anodes[J]. Journal of Power Sources, 2010, 195(15): 4893-4904 [22] TODD B, YOUNG J B. Thermodynamic and transport properties of gases for use in solid oxide fuel cell modelling[J]. Journal of Power Sources, 2002, 110(1): 186-200 [23] YUAN J, HUANG Y, SUNDÉN B, et al. Analysis of parameter effects on chemical reaction coupled transport phenomena in SOFC anodes[J]. Heat and Mass Transfer, 2009, 45(4): 471-484 [24] CAGLAYAN D G, SEZGIN B, DEVRIM Y, et al. Three-dimensional modeling of a high temperature polymer electrolyte membrane fuel cell at different operation temperatures[J]. International Journal of Hydrogen Energy, 2016, 41(23): 10060-10070 [25] TAKINO K, TACHIKAWA Y, MORI K, et al. Simulation of SOFC performance using a modified exchange current density for pre-reformed methane-based fuels[J]. International Journal of Hydrogen Energy, 2020, 45(11): 6912-6925 [26] ANDERSSON M, YUAN J, SUNDÉN B. SOFC modeling considering hydrogen and carbon monoxide as electrochemical reactants[J]. Journal of Power Sources, 2013, 232: 42-54 [27] SUWANWARANGKUL R, CROISET E, ENTCHEV E, et al. Experimental and modeling study of solid oxide fuel cell operating with syngas fuel[J]. Journal of Power Sources, 2006, 161(1): 308-322 [28] LU J, ZHU C, PAN C, et al. Highly efficient electrochemical reforming of CH4/CO2 in a solid oxide electrolyser[J]. Science Advances, 2018, doi:10.1126/sciadv.aar5100 [29] 谢静, 徐明益, 班帅, 等. 天然气内重整和外重整下SOFC多场耦合三维模拟分析[J]. 化工学报, 2019, 70(1): 214-226 XIE Jing, XU Mingyi, BAN Shuai, et al. Simulation analysis of multi-physics coupling SOFC fueled nature gas in the way of internal reforming and external reforming [J]. CIESC Journal, 2019, 70(1): 214-226(in Chinese)
|