[1] Jelley E E. Spectral absorption and fluorescence of dyes in the molecular state[J]. Nature, 1936, 138(3502):1009-1010
[2] Scheibe G. Vber Die Veränderlichkeit der Absorptionsspektren in Lösungen und Die Nebenvalenzen als ihre Ursache[J]. Angewandte Chemie, 1937, 50(11):212-219
[3] Cossarizza A. A new method for the cytofluorometric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5, 5', 6, 6'-tetrachloro-1, 1', 3, 3'-tetraethylbenzimidazolcarbocyanine iodide (JC-1)[J]. Biochemical and Biophysical Research Communications, 1993, 197(1):40-45
[4] Sugiyama S, Yao H, Matsuoka O, et al. Three-dimensional structure of J aggregates of pseudoisocyanine chloride dyes at a mica/solution interface revealed by AFM[J]. Chemistry Letters, 1999, 28(1):37-38
[5] Kaiser T E, Stepanenko V, Würthner F. Fluorescent J-aggregates of core-substituted perylene bisimides:Studies on structure-property relationship, nucleation-elongation mechanism, and sergeants-and-soldiers principle[J]. Journal of the American Chemical Society, 2009, 131(19):6719-6732
[6] Hecht T Schlossarek M Stolte M, et al. Photoconductive core-shell liquid-crystals of a perylene bisimide J-aggregate donor-acceptor dyad[J]. Angewandte Chemie International Edition, 2019, 58(37):12979-12983
[7] Harada M, Yamamoto S, Yatsuhashi T, et al. Cooperative dissociation of J-aggregates into monomers in the 2-isobutoxyethanol/water binary solvent with the lower critical solution temperature[J]. Chemical Physics, 2020, 536:110817-110826
[8] Castriciano M A, Trapani M, Romeo A, et al. Influence of magnetic micelles on assembly and deposition of porphyrin J-aggregates[J]. Nanomaterials, 2020, 10(2):187-192
[9] Ogi S, Sugiyasu K, Manna S, et al. Living supramolecular polymerization realized through a biomimetic approach[J]. Nature Chemistry, 2014, 6(3):188-195
[10] Changalvaie B, Han S, Moaseri E, et al. Indocyanine green J aggregates in polymersomes for near-infrared photoacoustic imaging[J]. ACS Applied Materials & Interfaces, 2019, 11(50):46437-46450
[11] Ma K, Wang R, Jiao T, et al. Preparation and aggregate state regulation of co-assembly graphene oxide-porphyrin composite Langmuir films via surface-modified graphene oxide sheets[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 584:124023-124032
[12] Zhang L, Jiang J, Liu M. Formation of silica nanotubes through a TPPS J aggregates template[J]. Chinese Science Bulletin, 2012, 57(33):4322-4327
[13] Qian Y, Gu Y, Feng J. Polymorphic monolayer and fibrillar nanostructures of J-aggregates of carbocyanine dye[J]. Materialovedenie, 2018, 12:23-28
[14] Ogul'Chansky T Y, Losytskyy M Y, Kovalska V B, et al. Interaction of cyanine dyes with nucleic acids. XVIII. Formation of the carbocyanine dye J-aggregates in nucleic acid grooves[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2001, 57(13):2705-2715
[15] Harazi S, Kapon O, Sharoni A, et al. Direct formation of carbocyanine J-aggregates in organic solvent[J]. The Journal of Physical Chemistry C, 2019, 123(31):19087-19093
[16] Grande V, Soberats B, Herbst S, et al. Hydrogen-bonded perylene bisimide J-aggregate aqua material[J]. Chemical Science, 2018, 9(34):6904-6911
[17] Ghosh S, Li X, Stepanenko V, et al. Control of H- and J-type π stacking by peripheral alkyl chains and self-sorting phenomena in perylene bisimide homo- and heteroaggregates[J]. Chemistry-A European Journal, 2008, 14(36):11343-11357
[18] Kaiser T E, Scheblykin I G, Thomsson D, et al. Temperature-dependent exciton dynamics in J-aggregates:When disorder plays a role[J]. The Journal of Physical Chemistry B, 2009, 113(48):15836-15842
[19] Camerel F, Bonardi L, Ulrich G, et al. Self-assembly of fluorescent amphipathic boron dipyrromethene scaffoldings in mesophases and organogels[J]. Chemistry of Materials, 2006, 18(21):5009-5021
[20] Camerel F, Ulrich G, Ziessel R. New platforms integrating ethynyl-grafted modules for organogels and mesomorphic superstructures[J]. Organic Letters, 2004, 6(23):4171-4174
[21] Li F, Zhang Y, Zhou L, et al. Synthesis and aggregation properties of boron-dipyrromethene dyes conjugated with guanine units[J]. Journal of Porphyrins and Phthalocyanines, 2018, 22(9/10):944-952
[22] Yang L, Fan G, Ren X, et al. Aqueous self-assembly of a charged BODIPY amphiphile via nucleation-growth mechanism[J]. Physical Chemistry Chemical Physics, 2015, 17(14):9167-9172
[23] Liu P, Gao F, Zhou L, et al. Tetrathienyl-functionalized red- and NIR-absorbing BODIPY dyes appending various peripheral substituents[J]. Organic & Biomolecular Chemistry, 2017, 15(6):1393-1399
[24] Fan G, Yang L, Chen Z. Water-soluble BODIPY and aza-BODIPY dyes:Synthetic progress and applications[J]. Frontiers of Chemical Science and Engineering, 2014, 8(4):405-417
[25] Chen Z, Liu Y, Wagner W, et al. Near-IR absorbing J-aggregate of an amphiphilic BF2-azadipyrromethene dye by kinetic cooperative self-assembly[J]. Angewandte Chemie International Edition, 2017, 56(21):5729-5733
[26] Wang H, Zhang Y, Chen Y, et al. Living supramolecular polymerization of an aza-BODIPY dye controlled by a hydrogen-bond-accepting triazole unit introduced by click chemistry[J]. Angewandte Chemie International Edition, 2020, 59(13):5185-5192
[27] Jiang X D, Li S, Guan J, et al. Recent advances of the near-infrared fluorescent aza-BODIPY dyes[J]. Current Organic Chemistry, 2016, 20(16):1736-1744
[28] Zhao W, Carreira E M. Conformationally restricted aza-BODIPY:Highly fluorescent, stable near-infrared absorbing dyes[J]. Chemistry-A European Journal, 2006, 12(27):7254-7263
[29] Gao Y, Pan Y, Chi Y, et al. A "reactive" turn-on fluorescence probe for hypochlorous acid and its bioimaging application[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2019, 206:190-196
[30] Parisotto S, Lace B, Artuso E, et al. Heck functionalization of an asymmetric aza-BODIPY core:Synthesis of far-red infrared probes for bioimaging applications[J]. Organic & Biomolecular Chemistry, 2017, 15(4):884-893
[31] Umezawa K, Citterio D, Suzuki K. New trends in near-infrared fluorophores for bioimaging[J]. Analytical Sciences, 2014, 30(3):327-349
[32] Liu Y, Song N, Chen L, et al. Synthesis of a near-infrared BODIPY dye for bioimaging and photothermal therapy[J]. Chemistry-An Asian Journal, 2018, 13(8):989-995
[33] Chen Y, Zhang X, Cheng D, et al. Near-infrared laser-triggered in situ dimorphic transformation of BF2-azadipyrromethene nanoaggregates for enhanced solid tumor penetration[J]. ACS, 2020, 14(3):3640-3650
[34] Moriuchi T, Noguchi S, Sakamoto Y, et al. Synthesis and characterization of bioorganometallic conjugates composed of NCN-pincer platinum(II) complexes and uracil derivatives[J]. Journal of Organometallic Chemistry, 2011, 696(5):1089-1095
[35] Guo S, Ma L, Zhao J, et al. BODIPY triads triplet photosensitizers enhanced with intramolecular resonance energy transfer (RET):Broadband visible light absorption and application in photooxidation[J]. Chem Sci, 2014, 5(2):489-500
[36] Adarsh N, Shanmugasundaram M, Avirah R R, et al. Aza-BODIPY derivatives:Enhanced quantum yields of triplet excited states and the generation of singlet oxygen and their role as facile sustainable photooxygenation catalysts[J]. Chemistry-A European Journal, 2012, 18(40):12655-12662
[37] Cabot R, Hunter C A, Varley L M. Hydrogen bonding properties of non-polar solvents[J]. Organic & Biomolecular Chemistry, 2010, 8(6):1455-1462
[38] Goldstein R F, Stryer L. Cooperative polymerization reactions. Analytical approximations, numerical examples, and experimental strategy[J]. Biophysical Journal, 1986, 50(4):583-599
[39] Chen Z, Lohr A, Saha-Möller C R, et al. Self-assembled π-stacks of functional dyes in solution:Structural and thermodynamic features[J]. Chemical Society Reviews, 2009, 38(2):564-584
[40] Smulders M M J, Schenning A P H J, Meijer E W. Insight into the mechanisms of cooperative self-assembly:The "sergeants-and-soldiers" principle of chiral and achiral C3-symmetrical discotic triamides[J]. Journal of the American Chemical Society, 2008, 130(2):606-611
[41] Jonkheijm P, van der Schoot P, Schenning A P H J, et al. Probing the solvent-assisted nucleation pathway in chemical self-assembly[J]. Science, 2006, 313(5783):80-83
[42] Smets J, Graindourze M, Zeegers-Huyskens T, et al. FT-IR spectroscopic study of uracil derivatives and their hydrogen-bonded complexes with model proton donors. Part 5. Complexes of uracils with hydrogen chloride in argon matrices[J]. Journal of Molecular Structure, 1994, 318:37-53
[43] Mandal S, Das G, Askari H. Physicochemical properties of the ternary complexes of Pt(II) with uracil and small peptide moieties:An experimental and computational study[J]. New Journal of Chemistry, 2015, 39(7):5208-5217
[44] Kaiser T, Wang H, Stepanenko V, et al. Supramolecular construction of fluorescent J-aggregates based on hydrogen-bonded perylene dyes[J]. Angewandte Chemie, 2007, 119(29):5637-5640
|