[1] Montenegro G, Onorati A. Urea-SCR technology for deNOx after treatment of diesel exhausts[EB/OL]. 2014
[2] Cheng Y, Montreuil C N, Cavataio G, et al. Sulfur tolerance and DeSOx studies on diesel SCR catalysts[J]. SAE International Journal of Fuels and Lubricants, 2008, 1(1):471-476
[3] Gao F, Kwak J H, Szanyi J, et al. Current understanding of Cu-exchanged Chabazite molecular sieves for use as commercial diesel engine DeNOx catalysts[J]. Topics in Catalysis, 2013, 56(15/17):1441-1459
[4] Xue J, Wang X, Qi G, et al. Characterization of copper species over Cu/SAPO-34 in selective catalytic reduction of NOx with ammonia:Relationships between active Cu sites and de-NOx performance at low temperature[J]. Journal of Catalysis, 2013, 297:56-64
[5] Wang J, Shao L, Wang C, et al. Controllable preparation of various crystal size and nature of intra-crystalline diffusion in Cu/SSZ-13 NH3-SCR catalysts[J]. Journal of Catalysis, 2018, 367:221-228
[6] Wang D, Zhang L, Kamasamudram K, et al. In situ-DRIFTS study of selective catalytic reduction of NOx by NH3 over Cu-exchanged SAPO-34[J]. ACS Catalysis, 2013, 3(5):871-881
[7] Su W, Chang H, Peng Y, et al. Reaction pathway investigation on the selective catalytic reduction of NO with NH3 over Cu/SSZ-13 at low temperatures[J]. Environmental Science & Technology, 2015, 49(1):467-473
[8] Yu T, Hao T, Fan D, et al. Recent NH3-SCR mechanism research over Cu/SAPO-34 catalyst[J]. The Journal of Physical Chemistry C, 2014, 118(13):6565-6575
[9] Gao F, Wang Y, Szanyi J, et al. Selective catalytic reduction over Cu/SSZ-13:Linking homo-and heterogeneous catalysis[J]. J Am Chem Soc, 2017, 139:4935-4942
[10] Christopher P, Ishant K, Atish P A, et al. Dynamic multinuclear sites formed by mobilized copper ions in NOx selective catalytic reduction[J]. Science, 2017, 357:898-903
[11] Wang J, Huang Y, Yu T, et al. The migration of Cu species over Cu-SAPO-34 and its effect on NH3 oxidation at high temperature[J]. Catalysis Science & Technology, 2014, 4(9):3004-3012
[12] Leistner K, Mihai O, Wijayanti K, et al. Comparison of Cu/BEA, Cu/SSZ-13 and Cu/SAPO-34 for ammonia-SCR reactions[J]. Catalysis Today, 2015, 258:49-55
[13] Wang C, Wang J, Wang J, et al. The role of impregnated sodium ions in Cu/SSZ-13 NH3-SCR catalysts[J]. Catalysts, 2018, 8:593-607
[14] Shen M, Wen H, Hao T, et al. Deactivation mechanism of SO2 on Cu/SAPO-34 NH3-SCR catalysts:Structure and active Cu2+[J]. Catalysis Science & Technology, 2015, 5(3):1741-1749
[15] Brookshear D, Nam J, Nguyen K, et al. Impact of sulfation and desulfation on NOx reduction using Cu-chabazite SCR catalysts[J]. Catalysis Today, 2015, 258:359-366
[16] Wijayanti K, Andonova S, Kumar A, et al. Impact of sulfur oxide on NH3-SCR over Cu-SAPO-34[J]. Applied Catalysis B:Environmental, 2015, 166/167:568-579
[17] Jangjou Y, Quan D, Gu Y, et al. Nature of Cu active centers in Cu-SSZ-13 and their responses to SO2 exposure[J]. ACS Catalysis, 2018, 8(2):1325-1337
[18] Luo J, Wang D, Kumar A, et al. Identification of two types of Cu sites in Cu/SSZ-13 and their unique responses to hydrothermal aging and sulfur poisoning[J]. Catalysis Today, 2016, 267:3-9
[19] Wang C, Wang J, Wang J, et al. The effect of sulfate species on the activity of NH3-SCR over Cu/SAPO-34[J]. Applied Catalysis B:Environmental, 2017, 204:239-249
[20] Wijayanti K, Xie K, Kumar A, et al. Effect of gas compositions on SO2 poisoning over Cu/SSZ-13 used for NH3-SCR[J]. Applied Catalysis B:Environmental, 2017, 219:142-154
[21] Shen M, Zhang Y, Wang J, et al. Nature of SO3 poisoning on Cu/SAPO-34 SCR catalysts[J]. Journal of Catalysis, 2018, 358:277-286
[22] Su W, Li Z, Zhang Y, et al. Identification of sulfate species and their influence on SCR performance of Cu/CHA catalyst[J]. Catalysis Science & Technology, 2017, 7(7):1523-1528
[23] Wang C, Hou Y, Yan W, et al. The role of SO3 poisoning in CU/SSZ-13 NH3-SCR catalysts[J]. Catalysts, 2019, 9:741-754
[24] Hammershøi P S, Jangjou Y, Epling W S, et al. Reversible and irreversible deactivation of Cu-CHA NH3-SCRcatalysts by SO2 and SO3[J]. Applied Catalysis B:Environmental, 2018, 226:38-45
[25] Dahlin S, Lantto C, Englund J, et al. Chemical aging of Cu-SSZ-13 SCR catalysts for heavy-duty vehicles-Influence of sulfur dioxide[J]. Catalysis Today, 2019, 320:72-83
[26] Wijayanti K, Leistner K, Chand S, et al. Deactivation of Cu-SSZ-13 by SO2 exposure under SCR conditions[J]. Catalysis Science & Technology, 2015, 6(8):2565-2579
[27] Zhang L, Wang D, Liu Y, et al. SO2 poisoning impact on the NH3-SCR reaction over a commercial Cu-SAPO-34 SCR catalyst[J]. Applied Catalysis B:Environmental, 2014, 156/157:371-377
[28] Hammershøi P S, Vennestrøm P N R, Falsig H, et al. Importance of the Cu oxidation state for the SO-2 poisoning of a Cu-SAPO-34 catalyst in the NH3-SCR reaction[J]. Applied Catalysis B:Environmental, 2018, 236:377-383
[29] Shen M, Li X, Wang J, et al. Nature identification of Cu active sites in sulfur-fouled Cu/SAPO-34 regeneration[J]. Ind Eng Chem Res, 2018, 57(10):3501-3509
[30] Kumar A, Smith M A, Kamasamudram K, et al. Impact of different forms of feed sulfur on small-pore Cu-zeolite SCR catalyst[J]. Catalysis Today, 2014, 231:75-82
[31] Shen M, Wang Z, Li X, et al. Effects of regeneration conditions on sulfated CuSSZ-13 catalyst for NH3-SCR[J]. Korean J Chem Eng, 2019, 36(8):1249-1257
[32] Ando R, Banno Y, Nagata M. Detailed mechanism of S poisoning and de-sulfation treatment of Cu-SCR catalyst[J]. SAE Technical Paper Series, 2017, doi:10.4271/2017-01-0944
[33] Kumar A, Smith M A, Kamasamudram K, et al. Chemical deSO<i>x: An effective way to recover Cu-zeolite SCR catalysts from sulfur poisoning[J]. Catalysis Today, 2016, 267:10-16
|