[1] 冯建, 熊伟, 贾云, 等. Ru/TiO2催化剂上甘油氢解制1,2-丙二醇[J]. 催化学报, 2011, 32(9): 1 545-1 549 Feng Jian, Xiong Wei, Jia Yun, et al. Hydrogenolysis of glycerol to 1,2-propanediol over Ru/TiO2 catalyst[J]. Chinese Journal of Catalysis, 2011, 32(9): 1 545-1 549(in Chinese)
[2] Miyazawa T, Kusunoki Y, Kunimori K, et al. Glycerol conversion in the aqueous solution under hydrogen over Ru/C-An ion-exchange resin and its reaction mechanism [J]. J Catal, 2006, 240(2): 213-221
[3] Huang L, Zhu Y, Zhang H, et al. Continuous production of 1,2-propanediol by the selective hydrogenolysis of solvent-free glycerol under mild conditions[J]. J Chem Technol Biotechnol, 2008, 83(12): 1 670-1 675
[4] Kusunoki Y, Miyazawa T, Kunimori K, et al. Highly active metal-acid bifunctional catalyst system for hydrogenolysis of glycerol under mild reaction conditions[J]. Catal Commun, 2005, 6(10): 645-649
[5] 李莉, 杨娟, 于磊, 等. 甘油氢解合成1,2-丙二醇铜锌铝催化剂的性能[J]. 化学工业与工程, 2013, 30(4): 16-22 Li Li, Yang Juan, Yu Lei, et al. Performance of Cu-Zn-Al catalyst for hydrogenolysis of glycerol to 1,2-propanediol[J]. Chemical Industry and Engineering, 2013, 30(4):16-22 (in Chinese)
[6] 田沙沙, 杨娟, 陈吉祥. 以类水滑石为前体的铜基催化剂催化甘油氢解反应[J]. 化学工业与工程, 2015, 32(2): 25-30 Tian Shasha, Yang Juan, Chen Jixiang. Hydrogenolysis of glycerol to 1,2-propanediol on Cu-based catalysts derived from hydrotalcite-like precursors[J]. Chemical Industry and Engineering, 2015, 32(2): 25-30 (in Chinese)
[7] Guo L, Zhou J, Mao J, et al. Supported Cu catalysts for the selective hydrogenolysis of glycerol to propanediols[J]. Appl Catal A, 2009, 367(1/2): 93-98
[8] Zhou J, Guo L, Guo X, et al. Selective hydrogenolysis of glycerol to propanediols on supported Cu-containing bimetallic catalysts[J]. Green Chem, 2010, 12: 1 835-1 843
[9] 赵兰兰, 陈吉祥. P对Cu/Al2O3催化剂结构及其催化甘油氢解反应性能的影响[J]. 催化学报, 2012, 33 (8): 1 410-1 416 Zhao Lanlan, Chen Jixiang. Effect of phosphorus on structure and performance of Cu/Al2O3 catalysts for hydrogenolysis of glycerol[J]. Chinese Journal of Catalysis, 2012, 33 (8): 1 410-1 416(in Chinese)
[10] Bautista F M, Campelo J M, Garcia A, et al. Acidity and catalytic activity of AlPO4-B2O3 and Al2O3-B2O3 (5~30 wt% B2O3) systems prepared by impregnation[J]. Appl Catal A, 1998, 170(1): 159-168
[11] Usman U, Takaki M, Kubota T, et al. Effect of boron addition on a MoO3/Al2O3 catalyst: Physicochemical characterization [J]. Appl Catal A, 2005, 286(1): 148-154
[12] Kamitsos E I, Karakassides M A, Chryssikost G D. Vibrational spectra of magnesium-sodium-borate glasses: Ⅰ) Raman and mid-infrared investigation of the network structure[J]. J Phys Chem, 1987, 91(5): 1 073-1 079
[13] Chary K V R, Sagar G V, Naresh D, et al. Characterization and reactivity of copper oxide catalysts supported on TiO2-ZrO2[J]. J Phys Chem B, 2005, 109(19): 9 437-9 444
[14] Chen L, Horiuchi T, Osaki T, et al. Catalytic selective reduction of NO with propylene over Cu-Al2O3 catalysts: Influence of catalyst preparation method[J]. Appl Catal B, 1999, 23(4): 259-269
[15] Usman U, Takaki M, Kubota T, et al. Effect of boron addition on a MoO3/Al2O3 catalyst: Physicochemical characterization[J]. Appl Catal A, 2005, 286(1): 148-154
[16] Su C, Suarez D L. Coordination of adsorbed boron: A FTIR spectroscopic study[J]. Environ Sci Technol, 1995, 29: 302-311
[17] He Z, Lin H, He P, et al. Effect of boric oxide doping on the stability and activity of a Cu-SiO2 catalyst for vapor-phase hydrogenation of dimethyl oxalate to ethylene glycol[J]. J Catal, 2011, 277: 54-63
|