[1] Turner J A. A realizable renewable energy future[J]. Science, 1999, 285(5428):687-689
[2] Thomas J G N. Kinetics of electrolytic hydrogen evolution and the adsorption of hydrogen by metals[J]. Transactions of the Faraday Society, 1961, 57:1603-1611
[3] Greeley J, Jaramillo T F, Bonde J, et al. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution[J]. Nat Mater, 2006, 5(11):909-913
[4] Zou X, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting[J]. Chemical Society Reviews, 2015, 44(15):5148-5180
[5] 王宏智, 张晓振, 黄波, 等. 碳毡基体上电沉积Ni-Mo合金及其催化析氢性能[J]. 化学工业与工程, 2017, 34(1):53-59 Wang Hongzhi, Zhang Xiaozhen, Huang Bo, et al. Electrodeposition of Ni-Mo alloy from ionic liquids and its catalytic properties for hydrogen evolution[J]. Chemcial Industry and Engineering, 2017, 34(1):53-59(in Chinese)
[6] Tsai C, Chan K R, Norskov J K, et al. Theoretical insights into the hydrogen evolution activity of layered transition metal dichalcogenides[J]. Surf Sci, 2015, 640:133-140
[7] Li Y, Wang H, Xie L, et al. MoS2 nanoparticles grown on graphene:An advanced catalyst for the hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2011, 133(19):7296-7299
[8] Hinnemann B, Moses P G, Bonde J, et al. Biomimetic hydrogen evolution:MoS2 nanoparticles as catalyst for hydrogen evolution[J]. Journal of the American Chemical Society, 2005, 127(15):5308-5309
[9] Zong X, Yan H, Wu G, et al. Enhancement of photocatalytic H2 evolution on CdS by loading MOS2 as cocatalyst under visible light irradiation[J]. Journal of the American Chemical Society, 2008, 130(23):7176-7177
[10] Xiang Q, Yu J, Jaroniec M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles[J]. Journal of the American Chemical Society, 2012, 134(15):6575-6578
[11] 秦瑞杰, 张占男, 王宇新. 石墨烯负载MoS2-Ni2P纳米颗粒作为析氢电催化剂[J]. 化学工业与工程, 2017, 34(2):21-26 Qin Ruijie, Zhang Zhannan, Wang Yuxin. MoS2-Ni2P nanoparticles supported on graphene as electrocatalyst towards hydrogen evolution reaction[J]. Chemcial Industry and Engineering, 2017, 34(2):21-26(in Chinese)
[12] Duan J, Chen S, Chambers B A, et al. 3D WS2 nanolayers@heteroatom-doped graphene films as hydrogen evolution catalyst electrodes[J]. Advanced Materials, 2015, 27(28):4234-4241
[13] Lukowski M A, Daniel A S, English C R, et al. Highly active hydrogen evolution catalysis from metallic WS2 nanosheets[J]. Energy & Environmental Science, 2014, 7(8):2608-2613
[14] Yang J, Voiry D, Ahn S J, et al. Two-Dimensional hybrid nanosheets of tungsten disulfide and reduced graphene oxide as catalysts for enhanced hydrogen evolution[J]. Angewandte Chemie International Edition, 2013, 52(51):13751-13754
[15] Jin J, Zhu Y, Liu Y, et al. CoP nanoparticles combined with WS2 nanosheets as efficient electrocatalytic hydrogen evolution reaction catalyst[J]. International Journal Of Hydrogen Energy, 2017, 42(7):3947-3954
[16] Wang X, Gan X, Hu T, et al. Noble-Metal-Free hybrid membranes for highly efficient hydrogen evolution[J]. Advanced Materials, 2017, 29(4):1603617-1603625
[17] Li H, Tsai C, Koh A L, et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies[J]. Nat Mater, 2016, 15(1):48-53
[18] Cao S, Chen Y, Wang C, et al. Spectacular photocatalytic hydrogen evolution using metal-phosphide/CdS hybrid catalysts under sunlight irradiation[J]. Chemical Communications, 2015, 51(41):8708-8711
[19] Chhowalla M, Shin H S, Eda G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J]. Nat Chem, 2013, 5(4):263-275
|