[1] BABU N J, NANGIA A. Solubility advantage of amorphous drugs and pharmaceutical cocrystals[J]. Crystal Growth & Design, 2011, 11(7): 2662-2679
[2] 孙晶晶, 贾丽娜, 林波, 等. 药物-药物共晶的研究进展[J]. 化工学报, 2021, 72(2):828-840 SUN Jingjing, JIA Lina, LIN Bo, et al. Research advances of drug-drug co-crystals[J]. CIESC Journal, 2021, 72(2):828-840(in Chinese)
[3] YIN H, WU N, ZHOU B, et al. Slow-release drug-drug cocrystals of oxaliplatin with flavonoids: Delaying hydrolysis and reducing toxicity[J]. Crystal Growth & Design, 2021, 21(1): 75-85
[4] LIVERSIDGE G G, CONZENTINO P. Drug particle size reduction for decreasing gastric irritancy and enhancing absorption of naproxen in rats[J]. International Journal of Pharmaceutics, 1995, 125(2): 309-313
[5] 赵绍磊, 王灵宇, 吴送姑. 药物多晶型的研究进展[J]. 化学工业与工程, 2018, 35(3): 12-21 ZHAO Shaolei, WANG Lingyu, WU Songgu. Progress in the research of pharmaceutical polymorph[J]. Chemical Industry and Engineering, 2018, 35(3): 12-21(in Chinese)
[6] WU D, ZHANG B, YAO Q, et al. Evaluation on cocrystal screening methods and synthesis of multicomponent crystals: A case study[J]. Crystal Growth & Design, 2021, 21(8): 4531-4546
[7] FAEL H, DEMIREL A L. Indomethacin co-amorphous drug-drug systems with improved solubility, supersaturation, dissolution rate and physical stability[J]. International Journal of Pharmaceutics, 2021, 600: 120448
[8] HOSSAIN MITHU M S, ECONOMIDOU S, TRIVEDI V, et al. Advanced methodologies for pharmaceutical salt synthesis[J]. Crystal Growth & Design, 2021, 21(2): 1358-1374
[9] WANG X, DU S, ZHANG R, et al. Drug-drug cocrystals: Opportunities and challenges[J]. Asian Journal of Pharmaceutical Sciences, 2021, 16(3): 307-317
[10] BERRY D J, STEED J W. Pharmaceutical cocrystals, salts and multicomponent systems; intermolecular interactions and property based design[J]. Advanced Drug Delivery Reviews, 2017, 117: 3-24
[11] BLAGDEN N, DE MATAS M, GAVAN P T, et al. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates[J]. Advanced Drug Delivery Reviews, 2007, 59(7): 617-630
[12] VASILEV N A, SUROV A O, VORONIN A P, et al. Novel cocrystals of itraconazole: Insights from phase diagrams, formation thermodynamics and solubility[J]. International Journal of Pharmaceutics, 2021, 599: 120441
[13] 齐锦伟, 张坤飞, 韩健, 等. 水飞蓟宾与水杨酸、丁香酸、水杨酰胺的共晶[J]. 化学工业与工程, 2023, 40(1): 138-146 QI Jinwei, ZHANG Kunfei, HAN Jian, et al. Cocrystals of silybin with salicylic acid, syringic acid and salicylamide[J]. Chemical Industry and Engineering, 2023, 40(1): 138-146(in Chinese)
[14] FANDIÑO O E, REVIGLIO L, LINCK Y G, et al. Novel cocrystals and eutectics of the antiprotozoal tinidazole: Mechanochemical synthesis, cocrystallization, and characterization[J]. Crystal Growth & Design, 2020, 20(5): 2930-2942
[15] SHINOZAKI T, ONO M, HIGASHI K, et al. A novel drug-drug cocrystal of levofloxacin and metacetamol: Reduced hygroscopicity and improved photostability of levofloxacin[J]. Journal of Pharmaceutical Sciences, 2019, 108(7): 2383-2390
[16] JOSHI T V, SINGARAJU A B, SHAH H S, et al. Structure-mechanics and compressibility profile study of flufenamic acid: Nicotinamide cocrystal[J]. Crystal Growth & Design, 2018, 18(10): 5853-5865
[17] 龚俊波, 孙杰, 王静康. 面向智能制造的工业结晶研究进展[J]. 化工学报, 2018, 69(11):4505-4517 GONG Junbo, SUN Jie, WANG Jingkang. Research progress of industrial crystallization towards intelligent manufacturing[J]. CIESC Journal, 2018, 69(11):4505-4517(in Chinese)
[18] SWAPNA B, MADDILETI D, NANGIA A. Cocrystals of the tuberculosis drug isoniazid: Polymorphism, isostructurality, and stability[J]. Crystal Growth & Design, 2014, 14(11): 5991-6005
[19] DELORI A, GALEK P T A, PIDCOCK E, et al. Quantifying homo- and heteromolecular hydrogen bonds as a guide for adduct formation[J]. Chemistry-A European Journal, 2012, 18(22): 6835-6846
[20] FÁBIÁN L. Cambridge structural database analysis of molecular complementarity in cocrystals[J]. Crystal Growth & Design, 2009, 9(3): 1436-1443
[21] MOHAMMAD M A, ALHALAWEH A, VELAGA S P. Hansen solubility parameter as a tool to predict cocrystal formation[J]. International Journal of Pharmaceutics, 2011, 407(1/2): 63-71
[22] MUSUMECI D, HUNTER C A, PROHENS R, et al. Virtual cocrystal screening[J]. Chemical Science, 2011, 2(5): 883-890
[23] GRECU T, HUNTER C A, GARDINER E J, et al. Validation of a computational cocrystal prediction tool: Comparison of virtual and experimental cocrystal screening results[J]. Crystal Growth & Design, 2014, 14(1): 165-171
[24] ROCA-PAIXãO L, CORREIA N T, AFFOUARD F. Affinity prediction computations and mechanosynthesis of carbamazepine based cocrystals[J]. CrystEngComm, 2019, 21(45): 6991-7001
[25] MSWAHILI M E, LEE M J, MARTIN G L, et al. Cocrystal prediction using machine learning models and descriptors[J]. Applied Sciences, 2021, 11(3): 1323
[26] LEE M J, KIM J Y, KIM P, et al. Novel cocrystals of vonoprazan: Machine learning-assisted discovery[J]. Pharmaceutics, 2022, 14(2): 429
[27] WANG D, YANG Z, ZHU B, et al. Machine-learning-guided cocrystal prediction based on large data base[J]. Crystal Growth & Design, 2020, 20(10): 6610-6621
[28] ZHENG Z, DENG Y, XIE W, et al. Co-former screening method for multicomponent crystals based on partial least squares regression: A case study of ciprofloxacin[J]. Crystal Growth & Design, 2023, 23(5): 3244-3257
[29] ZHANG J, YANG X, HAN Y, et al. Measurement and correlation for solubility of levofloxacin in six solvents at temperatures from 288.15 to 328.15 K[J]. Fluid Phase Equilibria, 2012, 335: 1-7
[30] 单爱莲, 赵桂元, 钱思源. 左氧氟沙星不良反应的国内外文献个案调查与分析[J]. 中国临床药理学杂志, 2012, 28(3): 212-217 SHAN Ailian, ZHAO Guiyuan, QIAN Siyuan. Investigation and analysis the adverse drug reaction of levofloxacin on domestic and foreign case report[J]. The Chinese Journal of Clinical Pharmacology, 2012, 28(3): 212-217(in Chinese)
[31] NUGRAHANI I, SULAIMAN M R, EDA C, et al. Stability and antibiotic potency improvement of levofloxacin by producing new salts with 2, 6- and 3, 5-dihydroxybenzoic acid and their comprehensive structural study[J]. Pharmaceutics, 2022, 15(1): 124
[32] NUGRAHANI I, LAKSANA A N, UEKUSA H, et al. New organic salt from levofloxacin-citric acid: What is the impact on the stability and antibiotic potency?[J]. Molecules (Basel, Switzerland), 2022, 27(7): 2166
[33] ISLAM N U, UMAR M N, KHAN E, et al. Levofloxacin cocrystal/salt with phthalimide and caffeic acid as promising solid-state approach to improve antimicrobial efficiency[J]. Antibiotics, 2022, 11(6): 797
[34] GREENHALGH D J, WILLIAMS A C, TIMMINS P, et al. Solubility parameters as predictors of miscibility in solid dispersions[J]. Journal of Pharmaceutical Sciences, 1999, 88(11): 1182-1190
[35] CHAMBERS L I, GROHGANZ H, PALMELUND H, et al. Predictive identification of co-formers in co-amorphous systems[J]. European Journal of Pharmaceutical Sciences, 2021, 157: 105636
[36] DENG Y, DENG W, HUANG W, et al. Norfloxacin co-amorphous salt systems: Effects of molecular descriptors on the formation and physical stability of co-amorphous systems[J]. Chemical Engineering Science, 2022, 253: 117549
[37] 马坤, 高静, 马磊. 药物的共晶与盐[J]. 中国药科大学学报, 2012, 43(5): 475-480 MA Kun, GAO Jing, MA Lei. Pharmaceutical cocrystals and salts[J]. Journal of China Pharmaceutical University, 2012, 43(5): 475-480
[38] LIU L, ZOU D, ZHANG Y, et al. Pharmaceutical salts/cocrystals of enoxacin with dicarboxylic acids: Enhancing in vitro antibacterial activity of enoxacin by improving the solubility and permeability[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 154: 62-73
|