[1] SIMON P, GOGOTSI Y. Perspectives for electrochemical capacitors and related devices[J]. Nature Materials, 2020, 19: 1151-1163
[2] ZHANG Y, HU H, WANG Z, et al. Boosting the performance of hybrid supercapacitors through redox electrolyte-mediated capacity balancing[J]. Nano Energy, 2020, 68: 104226
[3] XU H, CAO Y, LI Y, et al. High-loading Co-doped NiO nanosheets on carbon-welded carbon nanotube framework enabling rapid charge kinetic for enhanced supercapacitor performance[J]. Journal of Energy Chemistry, 2020, 50: 240-247
[4] WANG S, YAO C, CAI Y, et al. Construct α-Fe2O3/rGO/PS composite structure for promoted spatial charge separation and exceptional catalytic activity in visible-light-driven photocatalysis-persulfate activation coupling system[J]. Journal of Alloys and Compounds, 2022, 898: 162829
[5] ZHOU Y, WEI L, LI C, et al. Nanostructure and phase engineering integration of amorphous Ni-Co sulfide/crystalline MnS/rGO cathode and ultra-small Fe2O3 nanodots/rGO anode for all-solid-state asymmetric supercapacitors[J]. Journal of Energy Storage, 2022, 45: 103765
[6] ZHANG X, LUO J, TANG P, et al. A universal strategy for metal oxide anchored and binder-free carbon matrix electrode: A supercapacitor case with superior rate performance and high mass loading[J]. Nano Energy, 2017, 31: 311-321
[7] SUN S, ZHAI T, LIANG C, et al. Boosted crystalline/amorphous Fe2O3-δ core/shell heterostructure for flexible solid-state pseudocapacitors in large scale[J]. Nano Energy, 2018, 45: 390-397
[8] MAZLOUM-ARDAKANI M, SABAGHIAN F, YAVARI M, et al. Enhance the performance of iron oxide nanoparticles in supercapacitor applications through internal contact of α-Fe2O3@CeO2 core-shell[J]. Journal of Alloys and Compounds, 2020, 819: 152949
[9] WU C, ZHANG Z, CHEN Z, et al. Rational design of novel ultra-small amorphous Fe2O3 nanodots/graphene heterostructures for all-solid-state asymmetric supercapacitors[J]. Nano Research, 2021, 14(4): 953-960
[10] EL ROUBY W M A. Crumpled graphene: Preparation and applications[J]. RSC Advances, 2015, 5(82): 66767-66796
[11] WU Z, ZHOU G, YIN L, et al. Graphene/metal oxide composite electrode materials for energy storage[J]. Nano Energy, 2012, 1(1): 107-131
[12] WANG H, LU J, YAO S, et al. Sodium dodecyl sulfate-assisted synthesis of flower-like NiCo2O4 microspheres with large specific surface area for supercapacitors[J]. Journal of Alloys and Compounds, 2018, 744: 187-195
[13] HUMMERS W S Jr, OFFEMAN R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339
[14] ZHANG H, GAO Q, YANG K, et al. Solvothermally induced α-Fe2O3/graphene nanocomposites with ultrahigh capacitance and excellent rate capability for supercapacitors[J]. Journal of Materials Chemistry A, 2015, 3(44): 22005-22011
[15] SUBRAMANI K, KOWSIK S, SATHISH M. Facile and scalable ultra-fine cobalt oxide/reduced graphene oxide nanocomposites for high energy asymmetric supercapacitors[J]. ChemistrySelect, 2016, 1(13): 3455-3467
[16] WANG Y, CHEN Z, LEI T, et al. Hollow NiCo2S4 nanospheres hybridized with 3D hierarchical porous rGO/Fe2O3 composites toward high-performance energy storage device[J]. Advanced Energy Materials, 2018, 8(16): 1703453
[17] KIM J, CHUNG M K, KA B H, et al. The role of metallic Fe and carbon matrix in Fe2O3/Fe/carbon nanocomposite for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2010, 157(4): A412
[18] NITHYA V, ARUL N S. Review on α-Fe2O3 based negative electrode for high performance supercapacitors[J]. Journal of Power Sources, 2016, 327: 297-318
[19] WANG H, MI N, SUN S, et al. Oxygen vacancies enhancing capacitance of MgCo2O4 for high performance asymmetric supercapacitors[J]. Journal of Alloys and Compounds, 2021, 869: 159294
[20] SONG Z, LIU W, WEI W, et al. Preparation and electrochemical properties of Fe2O3/reduced graphene oxide aerogel (Fe2O3/rGOA) composites for supercapacitors[J]. Journal of Alloys and Compounds, 2016, 685: 355-363
[21] DONG T, DENG T, CHU X, et al. Carbon intermediate boosted Fe-ZIF derived α-Fe2O3 as a high-performance negative electrode for supercapacitors[J]. Nanotechnology, 2020, 31(13): 135403
[22] SHIVAKUMARA S, PENKI T R, MUNICHANDRAIAH N. Synthesis and characterization of porous flowerlike-Fe2O3 nanostructures for supercapacitor application[J]. ECS Electrochemistry Letters, 2013, 2(7): A60-A62
[23] ZHAO P, LI W, WANG G, et al. Facile hydrothermal fabrication of nitrogen-doped graphene/Fe2O3 composites as high performance electrode materials for supercapacitor[J]. Journal of Alloys and Compounds, 2014, 604: 87-93
[24] SU J, LIU S, WANG J, et al. Solution-based synthesis of carbon-hematite composite thin films for high-performance supercapacitor applications[J]. MRS Communications, 2016, 6(4): 367-374
[25] YUE L, ZHANG S, ZHAO H, et al. Microwave-assisted one-pot synthesis of Fe2O3/CNTs composite as supercapacitor electrode materials[J]. Journal of Alloys and Compounds, 2018, 765: 1263-1266
[26] LI J, ZHANG W, ZAN G, et al. A high-performance dual-function material: Self-assembled super long α-Fe2O3 hollow tubes with multiple heteroatom (C-, N- and S-) doping[J]. Dalton Transactions, 2016, 45(32): 12790-12799
[27] SHIVAKUMARA S, PENKI T R, MUNICHANDRAIAH N. High specific surface area α-Fe2O3 nanostructures as high performance electrode material for supercapacitors[J]. Materials Letters, 2014, 131: 100-103
[28] RAUT S S, SANKAPAL B R. Comparative studies on MWCNTs, Fe2O3 and Fe2O3/MWCNTs thin films towards supercapacitor application[J]. New Journal of Chemistry, 2016, 40(3): 2619-2627
[29] KIM H, CHO M Y, KIM M H, et al. A novel high-energy hybrid supercapacitor with an anatase TiO2-reduced graphene oxide anode and an activated carbon cathode[J]. Advanced Energy Materials, 2013, 3(11): 1500-1506
[30] TANG C, TANG Z, GONG H. Hierarchically porous Ni-Co oxide for high reversibility asymmetric full-cell supercapacitors[J]. Journal of the Electrochemical Society, 2012, 159(5): A651-A656
|