[1] DERVOS C T, VASSILIOU P. Sulfur hexafluoride (SF6): Global environmental effects and toxic byproduct formation[J]. Journal of the Air & Waste Management Association, 2000, 50(1): 137-141
[2] 唐炬, 杨东, 曾福平, 等. 基于分解组分分析的SF6设备绝缘故障诊断方法与技术的研究现状[J]. 电工技术学报, 2016, 31(20): 41-54 TANG Ju, YANG Dong, ZENG Fuping, et al. Research status of SF6 insulation equipment fault diagnosis method and technology based on decomposed components analysis[J]. Transactions of China Electrotechnical Society, 2016, 31(20): 41-54(in Chinese)
[3] 龚尚昆, 陈绍艺, 周舟, 等. 局部放电中的SF6分解产物及其影响因素研究[J]. 高压电器, 2011, 47(8): 48-51, 56 GONG Shangkun, CHEN Shaoyi, ZHOU Zhou, et al. Study on SF6 decomposition products of partial discharge and its influencing factors[J]. High Voltage Apparatus, 2011, 47(8): 48-51, 56(in Chinese)
[4] 付丽君, 关艳玲, 王晗. SF6分解产物产生机理和影响因素研究[J]. 黑龙江电力, 2021, 43(2): 146-149 FU Lijun, GUAN Yanling, WANG Han. Study on the mechanism and influencing factors of SF6 decomposition products[J]. Heilongjiang Electric Power, 2021, 43(2): 146-149(in Chinese)
[5] 黎晓淀, 唐念, 刘嘉文, 等. 六氟化硫电气设备气体分解物判断依据[J]. 中国设备工程, 2020(S1): 268-272 LI Xiaodian, TANG Nian, LIU Jiawen, et al. Judgment basis of gas decomposition products of sulfur hexafluoride electrical equipment[J]. China Plant Engineering, 2020(S1): 268-272(in Chinese)
[6] 唐彬, 朱立平, 黄云光. SF6气体分解物分析技术的发展与应用[J]. 广西电力, 2015, 38(4): 63-66 TANG Bin, ZHU Liping, HUANG Yunguang. Development and application of analysis technology of SF6 gas decomposition product[J]. Guangxi Electric Power, 2015, 38(4): 63-66(in Chinese)
[7] 李臻, 周舟, 龚尚昆, 等. SF6分解特性及分解产物检测方法研究进展[J]. 广东电力, 2016, 29(5): 67-76 LI Zhen, ZHOU Zhou, GONG Shangkun, et al. Research development of detection method for SF6 decomposition characteristic and decomposition products[J]. Guangdong Electric Power, 2016, 29(5): 67-76(in Chinese)
[8] 刘海波, 杨玉新, 张英, 等. 基于红外和紫外光谱的现场SF6气体综合检测技术[J]. 工业安全与环保, 2019, 45(4): 67-69, 74 LIU Haibo, YANG Yuxin, ZHANG Ying, et al. On-site SF6 gas comprehensive detection technology based on infrared and ultraviolet spectroscopy[J]. Industrial Safety and Environmental Protection, 2019, 45(4): 67-69, 74(in Chinese)
[9] 袁志坚, 吴树平, 袁镜江, 等. 电气设备SF6气体分解物在线检测技术的应用分析[J]. 电力系统装备, 2020(16): 78-79
[10] 吴丽, 庄贤盛. 基于SF6电气设备故障判断的脉冲氦离子化色谱检测法[J]. 广东电力, 2012, 25(8): 106-108, 116 WU Li, ZHUANG Xiansheng. Chromatographic detection method of pulse discharge helium ionization based on fault diagnosis for SF6 electric equipment[J]. Guangdong Electric Power, 2012, 25(8): 106-108, 116(in Chinese)
[11] 朱芳菲. SF6气体对环境与健康的影响[J]. 电世界, 2009, 50(12): 1-4 ZHU Fangfei. Effects of SF6 gas on environment and health[J]. Electrical World, 2009, 50(12): 1-4(in Chinese)
[12] 乔胜亚, 周文俊, 唐念, 等. 不同吸附剂对GIS局部放电特征气体变化规律的影响[J]. 电工技术学报, 2016, 31(3): 113-120 QIAO Shengya, ZHOU Wenjun, TANG Nian, et al. Effects of different adsorbents on the evolving law of target gases under partial discharges in GIS[J]. Transactions of China Electrotechnical Society, 2016, 31(3): 113-120(in Chinese)
[13] FURUKAWA H, CORDOVA K E, O’KEEFFE M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149): e1230444
[14] BRANDT P, NUHNEN A, LANGE M, et al. Metal-organic frameworks with potential application for SO2 separation and flue gas desulfurization[J]. ACS Applied Materials & Interfaces, 2019, 11(19): 17350-17358
[15] SMITH G L, EYLEY J E, HAN X, et al. Reversible coordinative binding and separation of sulfur dioxide in a robust metal-organic framework with open copper sites[J]. Nature Materials, 2019, 18(12): 1358-1365
[16] MARTÍNEZ-AHUMADA E, DÍAZ-RAMÍREZ M L, LARA-GARCÍA H A, et al. High and reversible SO2 capture by a chemically stable Cr(III)-based MOF[J]. Journal of Materials Chemistry A, 2020, 8(23): 11515-11520
[17] GUPTA N K, VIKRANT K, KIM K S, et al. Regeneration strategies for metal-organic frameworks post acidic gas capture[J]. Coordination Chemistry Reviews, 2022, 467: 214629
[18] KIRLIKOVALI K O, CHEN Z, WANG X, et al. Investigating the influence of hexanuclear clusters in isostructural metal-organic frameworks on toxic gas adsorption[J]. ACS Applied Materials & Interfaces, 2022, 14(2): 3048-3056
[19] 袁彬钦. 常温合成的MIL-100(Fe)的吸附性能和新型TED@Cu-BTC水稳定性增强机理[D]. 广州: 华南理工大学, 2019 YUAN Binqin. Room temperature synthesis of MIL-100(Fe) and its adsorption performances and enhanced water stability of TED@Cu-BTC[D].Guangzhou: South China University of Technology, 2019 (in Chinese)
[20] ZHANG X, YU L, WU X, et al. Experimental sensing and density functional theory study of H2S and SOF2 adsorption on Au-modified graphene[J]. Adv. Sci. 2015, 2:150010111
[21] LI T, HU S, MA R, et al. The electronic properties and adsorption mechanism of Agn, Aun (n=1~4) modified GeSe monolayer towards hazardous gases (H2S, NH3, NO2 and SOF2): A first-principles study[J]. Surfaces and Interfaces, 2022, 32: 102150
[22] WANG Y, LI T, PENG Y, et al. Pd and Pt decorated GeSe monolayers as promising materials for SOF2 and SO2F2 sensing[J]. Applied Surface Science, 2021, 560: 150028
[23] LIN L, HU C, DENG C, et al. Adsorption behavior of transition metal (Pd, Pt, Ag and Au) doped SnS monolayers on SF6 decomposed species and the effects of applied electric field and biaxial strain[J]. FlatChem, 2022, 36: 100438
[24] SANG T, LI T, YANG Y, et al. Pd, Rh-decorated Se-vacancy MoSe2 monolayer: A promising candidate for sensing and detecting SO2F2, SOF2, H2S and SO2[J]. Surfaces and Interfaces, 2022, 33: 102269
[25] LI T, GUI Y, ZHAO W, et al. Palladium modified MoS2 monolayer for adsorption and scavenging of SF6 decomposition products: A DFT study[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 123: 114178
[26] SANG T, LI T, XU H, et al. Rhn (n=1, 2) modified C3N: A potential candidate for H2S, SOF2, SO2F2 and SO2 detection and scavenging[J]. Diamond and Related Materials, 2022, 128: 109304
[27] CHOI S J, JANG B H, LEE S J, et al. Selective detection of acetone and hydrogen sulfide for the diagnosis of diabetes and halitosis using SnO2 nanofibers functionalized with reduced graphene oxide nanosheets[J]. ACS Applied Materials & Interfaces, 2014, 6(4): 2588-2597
[28] KAUR M, JAIN N, SHARMA K, et al. Room-temperature H2S gas sensing at ppb level by single crystal In2O3 whiskers[J]. Sensors and Actuators B: Chemical, 2008, 133(2): 456-461
[29] CHU J, WANG X, WANG D, et al. Highly selective detection of sulfur hexafluoride decomposition components H2S and SOF2 employing sensors based on tin oxide modified reduced graphene oxide[J]. Carbon, 2018, 135: 95-103
[30] LIU H, ZHOU Q, ZHANG Q, et al. Synthesis, characterization and enhanced sensing properties of a NiO/ZnO p-n junctions sensor for the SF6 decomposition byproducts SO2, SO2F2, and SOF2[J]. Sensors, 2017, 17(4): 913
[31] XU P, GUI Y, CHEN X. A DFT study of adsorption properties of SO2, SOF2, and SO2F2 on ZnO/CuO doped graphene[J]. Diamond and Related Materials, 2022, 126: 109103
[32] SU P, PENG Y. Fabrication of a room-temperature H2S gas sensor based on PPy/WO3 nanocomposite films by in situ photopolymerization[J]. Sensors and Actuators B: Chemical, 2014, 193: 637-643
[33] WANG D, PAN J, LAN T, et al. Tellurene nanoflake-based gas sensors for the detection of decomposition products of SF6[J]. ACS Applied Nano Materials, 2020, 3(8): 7587-7594
[34] BHARGAVA REDDY M S, KAILASA S, MARUPALLI B C G, et al. A family of 2D-MXenes: Synthesis, properties, and gas sensing applications[J]. ACS Sensors, 2022, 7(8): 2132-2163
[35] TAN G, TANG D, WANG X, et al. Overview of the recent advancements in graphene-based H2S sensors[J]. ACS Applied Nano Materials, 2022, 5(9): 12300-12319
[36] QIAN H, DENG J, ZHOU H, et al. A DFT study on the adsorption of Ga-BNNT to SF6 decomposition products under partial discharge[J]. Results in Physics, 2019, 14: 102419
[37] WANG J, ZHANG X, LIU L, et al. Adsorption of SF6 decomposition products by the S vacancy structure and edge structure of SnS2: A density functional theory study[J]. ACS Omega, 2021, 6(42): 28131-28139
[38] CHEN D, ZHANG X, TANG J, et al. Adsorption of SF6 decomposed products over ZnO(1010): Effects of O and Zn vacancies[J]. ACS Omega, 2018, 3(12): 18739-18752
[39] FANG X, HU X, JANSSENS-MAENHOUT G, et al. Sulfur hexafluoride (SF6) emission estimates for China: An inventory for 1990—2010 and a projection to 2020[J]. Environmental Science & Technology, 2013, 47(8): 3848-3855
[40] CHRISTOPHOROU L G, OLTHOFF J K, VAN BRUNT R J. Sulfur hexafluoride and the electric power industry[J]. IEEE Electrical Insulation Magazine, 1997, 13(5): 20-24
[41] KASHIWAGI D, TAKAI A, TAKUBO T, et al. Catalytic activity of rare earth phosphates for SF6 decomposition and promotion effects of rare earths added into AlPO4[J]. Journal of Colloid and Interface Science, 2009, 332(1): 136-144
[42] PARK N K, PARK H G, LEE T J, et al. Hydrolysis and oxidation on supported phosphate catalyst for decomposition of SF6[J]. Catalysis Today, 2012, 185(1): 247-252
[43] ZHANG J, ZHOU J, LIU Q, et al. Efficient removal of sulfur hexafluoride (SF6) through reacting with recycled electroplating sludge[J]. Environmental Science & Technology, 2013, 47(12): 6493-6499
[44] SONG X, LIU X, YE Z, et al. Photodegradation of SF6 on polyisoprene surface: Implication on elimination of toxic byproducts[J]. Journal of Hazardous Materials, 2009, 168(1): 493-500
[45] 张晓星, 李亚龙, 胡雄雄, 等. 基于TiO2表面紫外光催化降解高浓度SF6的实验与仿真研究[J]. 高电压技术, 2019, 45(7): 2212-2218 ZHANG Xiaoxing, LI Yalong, HU Xiongxiong, et al. Simulation and experimental study on degradation of high concentration SF6 based on ultraviolet photocatalysis principle of titanium dioxide surface[J]. High Voltage Engineering, 2019, 45(7): 2212-2218(in Chinese)
[46] GOVINDAN M, ADAM GOPAL R, MOON I S. Electrochemical sequential reduction and oxidation facilitates the continual ambient temperature degradation of SF6 to nontoxic gaseous compounds[J]. Chemical Engineering Journal, 2020, 382: 122881
[47] LEE H M, CHANG M, WU K. Abatement of sulfur hexafluoride emissions from the semiconductor manufacturing process by atmospheric-pressure plasmas[J]. Journal of the Air & Waste Management Association, 2004, 54(8): 960-970
[48] ZHANG X, CUI Z, LI Y, et al. Abatement of SF6 in the presence of NH3 by dielectric barrier discharge plasma[J]. Journal of Hazardous Materials, 2018, 360: 341-348
[49] CUI Z, ZHANG X, YUAN T, et al. Plasma-assisted abatement of SF6 in a dielectric barrier discharge reactor: Investigation of the effect of packing materials[J]. Journal of Physics D: Applied Physics, 2020, 53(2): 025205
[50] CUI Z, ZHOU C, JAFARZADEH A, et al. SF6 catalytic degradation in a γ-Al2O3 packed bed plasma system: A combined experimental and theoretical study[J]. High Voltage, 2022, 7(6): 1048-1058
[51] GUTIÉRREZ Y, GIANGREGORIO M M, PALUMBO F, et al. Sustainable and tunable Mg/MgO plasmon-catalytic platform for the grand challenge of SF6 environmental remediation[J]. Nano Letters, 2020, 20(5): 3352-3360
[52] CHEUNG W W L, REYGONDEAU G, FRÖLICHER T L. Large benefits to marine fisheries of meeting the 1.5 ℃ global warming target[J]. Science, 2016, 354(6319): 1591-1594
[53] 李祎, 张晓星, 傅明利, 等. 环保绝缘气体C4F7N研究及应用进展Ⅰ: 绝缘及电、热分解特性[J]. 电工技术学报, 2021, 36(17): 3535-3552 LI Yi, ZHANG Xiaoxing, FU Mingli, et al. Research and application progress of eco-friendly gas insulating medium C4F7N, part Ⅰ: Insulation and electrical, thermal decomposition properties[J]. Transactions of China Electrotechnical Society, 2021, 36(17): 3535-3552(in Chinese)
[54] 李祎, 张晓星, 傅明利, 等. 环保绝缘气体C4F7N研究及应用进展Ⅱ:相容性、安全性及设备研发[J]. 电工技术学报, 2021, 36(21): 4567-4579 LI Yi, ZHANG Xiaoxing, FU Mingli, et al. Research and application progress of eco-friendly gas insulating medium C4F7N, part Ⅱ: Material compatibility, safety and equipment development[J]. Transactions of China Electrotechnical Society, 2021, 36(21): 4567-4579(in Chinese)
[55] LI Y, ZHANG X, CHEN Q, et al. Influence of oxygen on dielectric and decomposition properties of C4F7N-N2-O2 mixture[J]. IEEE Trans Dielectr Electr Insul, 2019, 26: 1279-1286
[56] 尤天鹏, 董旭柱, 周文俊, 等. 中压设备中SF6替代气体的试验研究[J]. 电机与控制学报, 2022, 26(3): 59-65 YOU Tianpeng, DONG Xuzhu, ZHOU Wenjun, et al. Study on experimental SF6 replacement gas in medium gas pressure equipment[J]. Electric Machines and Control, 2022, 26(3): 59-65(in Chinese)
[57] ZHANG X, LI Y, SHAO X, et al. Influence of oxygen on the thermal decomposition properties of C4F7N-N2-O2 as an eco-friendly gas insulating medium[J]. ACS Omega, 2019, 4(20): 18616-18626
[58] 唐念, 赫树开, 曾晓哲, 等. 新型环保绝缘气体反式-1, 1, 1, 4, 4, 4-六氟-2-丁烯的红外吸收特性及检测技术研究[J]. 光谱学与光谱分析, 2021, 41(10): 3099-3105 TANG Nian, HE Shukai, ZENG Xiaozhe, et al. Research on infrared absorption characteristics and detection technology of new environmentally friendly insulating gas trans-1, 1, 1, 4, 4, 4-hexafluoro-2-butene[J]. Spectroscopy and Spectral Analysis, 2021, 41(10): 3099-3105(in Chinese)
|