[1] KAYUKOVA G P, GUBAIDULLIN A T, PETROV S M, et al. Changes of asphaltenes’ structural phase characteristics in the process of conversion of heavy oil in the hydrothermal catalytic system[J]. Energy & Fuels, 2016, 30(2): 773-783
[2] ZHANG S, LIU D, DENG W, et al. A review of slurry-phase hydrocracking heavy oil technology[J]. Energy & Fuels, 2007, 21(6): 3057-3062
[3] DU H, LIU D, LIU H, et al. Role of hydrogen pressure in slurry-phase hydrocracking of Venezuela heavy oil[J]. Energy & Fuels, 2015, 29(4): 2104-2110
[4] LI C, HAN Y, YANG T, et al. Preliminary study on the influence of catalyst dosage on coke formation of heavy oil slurry-bed hydrocracking[J]. Fuel, 2020, 270: 117489
[5] RANA M S, SÁMANO V, ANCHEYTA J, et al. A review of recent advances on process technologies for upgrading of heavy oils and residua[J]. Fuel, 2006, 86(9): 1216-1231
[6] DU J, DENG W, LI C, et al. Multi-metal catalysts for slurry-phase hydrocracking of coal-tar vacuum residue: Impact of inherent inorganic minerals[J]. Fuel, 2018, 215: 370-377
[7] SHARYPOV V I, KUZNETSOV B N, BEREGOVTSOVA N G, et al. Modification of iron ore catalysts for lignite hydrogenation and hydrocracking of coal-derived liquids[J]. Fuel, 1996, 75(1): 39-42
[8] PARK C, JUNG J, LEE C W, et al. Synthesis of mesoporous α-Fe2O3 nanoparticles by non-ionic soft template and their applications to heavy oil upgrading[J]. Scientific Reports, 2016, 6: 39136
[9] 李明, 王继乾, 邓文安, 等. Fe/炭黑、Ni/炭黑催化剂对渣油加氢反应的影响[J]. 燃料化学学报, 2007, 35(5): 558-562 LI Ming, WANG Jiqian, DENG Wenan, et al. Effect of Fe/carbon black, Ni/carbon black catalysts on hydrocracking reaction of residue oil[J]. Journal of Fuel Chemistry and Technology, 2007, 35(5): 558-562(in Chinese)
[10] HOSSEINPOUR M, FATEMI S, AHMADI S J. Catalytic cracking of petroleum vacuum residue in supercritical water media: Impact of α-Fe2O3 in the form of free nanoparticles and silica-supported granules[J]. Fuel, 2015, 159: 538-549
[11] MATSUMURA A, SATO S, KONDO T, et al. Hydrocracking Marlim vacuum residue with natural limonite. Part 2: Experimental cracking in a slurry-type continuous reactor[J]. Fuel, 2005, 84(4): 417-421
[12] 陈振涛, 徐春明. 重质油在孔道内扩散传质的研究进展[J]. 化工学报, 2016, 67(1): 165-175 CHEN Zhentao, XU Chunming. Progress of research on diffusional transport of heavy oil in pores[J]. CIESC Journal, 2016, 67(1): 165-175(in Chinese)
[13] 王博, 段爱军, 陈振涛, 等. 重质油在催化剂孔道内受限扩散及其关联模型研究进展[J]. 工业催化, 2017, 25(9): 1-9 WANG Bo, DUAN Aijun, CHEN Zhentao, et al. Research progress in restrictive diffusion and its empirical correlation of heavy oil in catalyst pore channels[J]. Industrial Catalysis, 2017, 25(9): 1-9(in Chinese)
[14] MARCHAL C, ABDESSALEM E, TAYAKOUT-FAYOLLE M, et al. Asphaltene diffusion and adsorption in modified NiMo alumina catalysts followed by ultraviolet (UV) spectroscopy[J]. Energy & Fuels, 2010, 24(8): 4290-4300
[15] LIN X, FARHI E, ARRIBART H. Determination of the isoelectric point of planar oxide surfaces by a particle adhesion method[J]. The Journal of Adhesion, 1995, 51(1/2/3/4): 181-189
[16] WANG J, LI J, XIE L, et al. Understanding the interaction mechanism between elemental selenium and ferric hydroxide in wastewater treatment[J]. Industrial & Engineering Chemistry Research, 2020, 59(14): 6662-6671
[17] BILGIN SIMSEK E, NOVAK I, BEREK D, et al. Novel composite sorbents based on carbon fibers decorated with ferric hydroxides: Arsenic removal[J]. Asia-Pacific Journal of Chemical Engineering, 2018, 13(5)
[18] 孙若琳, 张斯然, 安康, 等. CuO修饰的Cu1.5Mn1.5O4尖晶石型复合氧化物对CO氧化的协同催化[J]. 燃料化学学报, 2021, 49(6): 799-808 SUN Ruolin, ZHANG Siran, AN Kang, et al. Cu1.5Mn1.5O4 spinel type composite oxide modified with CuO for synergistic catalysis of CO oxidation[J]. Journal of Fuel Chemistry and Technology, 2021, 49(6): 799-808(in Chinese)
[19] 陈晨, 李海杰, 白杨, 等. 预硫化温度对煤直接液化催化剂组分转变及其催化性能的影响[J]. 燃料化学学报, 2022, 50(1): 54-62 CHEN Chen, LI Haijie, BAI Yang, et al. Effect of sulfidation temperature on component transformation and catalytic performance of direct coal liquefaction catalyst[J]. Journal of Fuel Chemistry and Technology, 2022, 50(1): 54-62(in Chinese)
[20] 王仲义, 闫作杰, 单敏, 等. 器外预硫化加氢裂化催化剂开工技术应用总结[J]. 炼油技术与工程, 2021, 51(1): 10-12, 32 WANG Zhongyi, YAN Zuojie, SHAN Min, et al. Application summary of Start-up technology of ex-situ presulfiding Hydrocracking catalyst[J]. Petroleum Refinery Engineering, 2021, 51(1): 10-12, 32(in Chinese)
[21] HOU S, TANG Y, ZHU T, et al. The molecular simulation and experimental investigation of toluene and naphthalene adsorption on ordered porous silica[J]. Chemical Engineering Journal, 2022, 435: 134844
[22] 郝海刚. 冷等离子体-热裂解耦合重油提质工艺及反应机理研究[D]. 北京: 中国科学院大学, 2014 HAO Haigang. Study on upgrading process and reaction mechanism of heavy oil by cold plasma-thermal cracking coupling[D].Beijing: University of Chinese Academy of Sciences, 2014 (in Chinese)
|