[1] 王延吉, 赵新强. 绿色催化过程与工艺[M]. 2版. 北京: 化学工业出版社, 2015 [2] ZHAO X, WANG N, GENG Y, et al. Direct synthesis of dimethyl toluene-2, 4-dicarbamate from 2, 4-toluene diamine, urea, and methanol[J]. Industrial & Engineering Chemistry Research, 2011, 50(24): 13636-13641 [3] ZUO Y, NIE X, LIU M, et al. Synthesis of diethyl toluene diamine by zeolite-catalyzed ethylation of 2, 4-toluene diamine[J]. Industrial & Engineering Chemistry Research, 2015, 54(30): 7364-7372 [4] 王延吉, 李志会, 王淑芳. 本质安全催化工程[M]. 北京: 化学工业出版社, 2018 [5] LI H, ZHAO Q, WAN Y, et al. Self-assembly of mesoporous Ni-B amorphous alloy catalysts[J]. Journal of Catalysis, 2006, 244(2): 251-254 [6] 方向明, 李凤仪, 夏克坚, 等. 硝基苯气相加氢催化剂Cu/SiO2的改性研究[J]. 应用化学, 1997, 14(2): 57-59 FANG Xiangming, LI Fengyi, XIA Kejian, et al. Effect of Cr and Mo on vapor phase hydrogenation catalysts Cu/SiO2 for nitrobenzene[J]. Chinese Journal of Applied Chemistry, 1997, 14(2): 57-59(in Chinese) [7] ZHAO Y, ZHANG H, HUANG C, et al. Pt/titania/reduced graphite oxide nanocomposite: An efficient catalyst for nitrobenzene hydrogenation[J]. Journal of Colloid and Interface Science, 2012, 374(1): 83-88 [8] 马丹, 王桂荣, 王延吉, 等. 二硝基甲苯还原制备甲苯二胺的研究进展[J]. 精细石油化工, 2007, 24(6): 87-91 MA Dan, WANG Guirong, WANG Yanji, et al. Research progresses in reduction of dinitrotoluene to toluene diamine[J]. Speciality Petrochemicals, 2007, 24(6): 87-91(in Chinese) [9] 李强, 郁丰善. 纳米Pd-PEG/C催化剂的制备及其催化加氢二硝基甲苯[J]. 中国资源综合利用, 2020, 38(1): 5-7 LI Qiang, YU Fengshan. Preparation of Pd-PEG/C nanoparticle catalysts for catalytic hydrogenation of dinitrotoluene[J]. China Resources Comprehensive Utilization, 2020, 38(1): 5-7(in Chinese) [10] SUH D J, PARK T J, IHM S K. Characteristics of carbon-supported palladium catalysts for liquid-phase hydrogenation of nitroaromatics[J]. Industrial & Engineering Chemistry Research, 1992, 31(8): 1849-1856 [11] BENEDETTI A, FAGHERAZZI G, PINNA F, et al. The influence of a second metal component (Cu, Sn, Fe) on Pd/SiO2 activity in the hydrogenation of 2, 4-dinitrotoluene[J]. Catalysis Letters, 1991, 10(3): 215-223 [12] PINNA F, SELVA M, SIGNORETTO M, et al. Pd-Fe/SiO2 catalysts in the hydrogenation of 2, 4-dinitrotoluene[J]. Journal of Catalysis, 1994, 150(2): 356-367 [13] AUER E, GROSS M, PANSTER P, et al. Supported iridium catalysts—A novel catalytic system for the synthesis of toluenediamine[J]. Catalysis Today, 2001, 65(1): 31-37 [14] ONOE T, IWAMOTO S, INOUE M. Synthesis and activity of the Pt catalyst supported on CNT[J]. Catalysis Communications, 2007, 8(4): 701-706 [15] NERI G, MUSOLINO M G, MILONE C, et al. Mechanism of 2, 4-dinitrotoluene hydrogenation over Pd/C[J]. Journal of Molecular Catalysis A: Chemical, 1995, 95(3): 235-241 [16] JANSSEN H J, KRUITHOF A J, STEGHUIS G J, et al. Kinetics of the catalytic hydrogenation of 2, 4-dinitrotoluene. 2. Modeling of the reaction rates and catalyst activity[J]. Industrial & Engineering Chemistry Research, 1990, 29(9): 1822-1829 [17] RAJASHEKHARAM M V, NIKALJE D D, JAGANATHAN R, et al. Hydrogenation of 2, 4-dinitrotoluene using a Pd/Al2O3 catalyst in a slurry reactor: A molecular level approach to kinetic modeling and nonisothermal effects[J]. Industrial & Engineering Chemistry Research, 1997, 36(3): 592-604 [18] NERI G, RIZZO G, MILONE C, et al. Microstructural characterization of doped-Pd/C catalysts for the selective hydrogenation of 2, 4-dinitrotoluene to arylhydroxylamines[J]. Applied Catalysis A: General, 2003, 249(2): 303-311 [19] 张雪梅, 李贵贤, 高云艳, 等. 载体对镍基催化剂催化2, 4-二硝基甲苯加氢反应的影响[J]. 石油学报(石油加工), 2012, 28(2): 231-235 ZHANG Xuemei, LI Guixian, GAO Yunyan, et al. Effects of support on the nickel-based catalysts for hydrogenation of 2, 4-dinitrotoluene[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2012, 28(2): 231-235(in Chinese) [20] 陈彭, 唐成黎, 赵明辉, 等. Ni/HY催化剂上2, 4-二硝基甲苯催化加氢合成2, 4-二氨基甲苯反应动力学研究[J]. 高校化学工程学报, 2018, 32(5): 1119-1126 CHEN Peng, TANG Chengli, ZHAO Minghui, et al. Kinetic study on hydrogenation of 2, 4-dinitrotoluene to 2, 4-tolylenediamine catalyzed by Ni/HY catalysts[J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(5): 1119-1126(in Chinese) [21] 于智慧, 闫泽, 范辉, 等. 活化过程对Ni-Fe催化剂的结构及二硝基甲苯催化加氢性能的影响[J]. 高等学校化学学报, 2014, 35(10): 1317-1324 YU Zhihui, YAN Ze, FAN Hui, et al. Activation process on Ni-Fe catalyst and the hydrogenation of dinitrotoluene[J]. Chemical Journal of Chinese Universities, 2014, 35(10): 1317-1324(in Chinese) [22] 闫少伟, 范辉, 梁川, 等. 二硝基甲苯低压加氢Ni-La-B非晶态合金催化剂的制备及结构表征[J]. 催化学报, 2012, 33(8): 1374-1382 YAN Shaowei, FAN Hui, LIANG Chuan, et al. Preparation and characterization of Ni-La-B amorphous alloy catalyst for low-pressure dinitrotoluene hydrogenation[J]. Chinese Journal of Catalysis, 2012, 33(8): 1374-1382(in Chinese) [23] KREUTZER M T, KAPTEIJN F, MOULIJN J A. Fast gas-liquid-solid reactions in monoliths: A case study of nitro-aromatic hydrogenation[J]. Catalysis Today, 2005, 105(3/4): 421-428 [24] 马建军, 郑世清, 谭心舜, et al. 连续制备甲苯二胺的方法: CN101712621A[P]. 2012-10-31 MA Jianjun, ZHENG Shiqing, TAN Xinshun, et al. Method for continuously preparing toluenediamine: CN101712621A[P]. 2012-10-31(in Chinese) [25] HOEK I, NIJHUIS T A, STANKIEWICZ A I, et al. Performance of the monolithic stirrer reactor: Applicability in multi-phase processes[J]. Chemical Engineering Science, 2004, 59(22/23): 4975-4981 [26] RAJASHEKHARAM M V, JAGANATHAN R, CHAUDHARI R V. A trickle-bed reactor model for hydrogenation of 2, 4 dinitrotoluene: Experimental verification[J]. Chemical Engineering Science, 1998, 53(4): 787-805 [27] MACHADO R M, PARRILLO D J, BOEHME R P, et al. Use of a monolith catalyst for the hydrogenation of dinitrotoluene to toluenediamine: US6005143[P]. 1999-12-21 [28] 徐彦铎, 李贵贤, 季东, 等. DNT氢化反应工艺和反应器研究进展[J]. 当代化工, 2013, 42(10): 1385-1387 XU Yanduo, LI Guixian, JI Dong, et al. Research progress in hydrogenation process and reactor of dinitrotoluene[J]. Contemporary Chemical Industry, 2013, 42(10): 1385-1387(in Chinese) [29] MERINO D, SANZ O, MONTES M. Effect of the thermal conductivity and catalyst layer thickness on the Fischer-Tropsch synthesis selectivity using structured catalysts[J]. Chemical Engineering Journal, 2017, 327: 1033-1042 [30] PORSIN A V, KULIKOV A V, ROGOZHNIKOV V N, et al. Structured reactors on a metal mesh catalyst for various applications[J]. Catalysis Today, 2016, 273: 213-220 [31] DA SILVA S W, BORTOLOZZI J P, BANÚS E D, et al. TiO2 thick films supported on stainless steel foams and their photoactivity in the nonylphenol ethoxylate mineralization[J]. Chemical Engineering Journal, 2016, 283: 1264-1272 [32] SANZ O, VELASCO I, REYERO I, et al. Effect of the thermal conductivity of metallic monoliths on methanol steam reforming[J]. Catalysis Today, 2016, 273: 131-139 [33] QIAO B, WANG A, YANG X, et al. Single-atom catalysis of CO oxidation using Pt/FeOx[J]. Nature Chemistry, 2011, 3(8): 634-641 [34] LIU W, ZHANG L, YAN W, et al. Single-atom dispersed Co-N-C catalyst: Structure identification and performance for hydrogenative coupling of nitroarenes[J]. Chemical Science, 2016, 7(9): 5758-5764 [35] SHAN J, LI M, ALLARD L F, et al. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts[J]. Nature, 2017, 551(7682): 605-608 [36] LIU J. Catalysis by supported single metal atoms[J]. ACS Catalysis, 2017, 7(1): 34-59 [37] YANG X, WANG A, QIAO B, et al. Single-atom catalysts: A new frontier in heterogeneous catalysis[J]. Accounts of Chemical Research, 2013, 46(8): 1740-1748 [38] JONES J, XIONG H, DELARIVA A T, et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping[J]. Science, 2016, 353(6295): 150-154 [39] WANG L, ZHANG W, WANG S, et al. Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst[J]. Nature Communications, 2016, 7(1): 1-8 [40] DVOŘÁK F, FARNESI CAMELLONE M, TOVT A, et al. Creating single-atom Pt-ceria catalysts by surface step decoration[J]. Nature Communications, 2016, 7(1): 1-8 [41] KWAK J H, HU J, MEI D, et al. Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on gamma-Al2O3[J]. Science, 2009, 325(5948): 1670-1673 [42] BLIEM R, MCDERMOTT E, FERSTL P, et al. Subsurface cation vacancy stabilization of the magnetite (001) surface[J]. Science, 2014, 346(6214): 1215-1218 [43] ZHANG Z, ZHU Y, ASAKURA H, et al. Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation[J]. Nature Communications, 2017, 8(1): 1-10 [44] WANG L, HUANG L, LIANG F, et al. Preparation, characterization and catalytic performance of single-atom catalysts[J]. Chinese Journal of Catalysis, 2017, 38(9): 1528-1539 [45] LIU P, CHEN J, ZHENG N. Photochemical route for preparing atomically dispersed Pd1/TiO2 catalysts on (001)-exposed anatase nanocrystals and P25[J]. Chinese Journal of Catalysis, 2017, 38(9): 1574-1580 [46] ZHANG S, NGUYEN L, LIANG J, et al. Catalysis on singly dispersed bimetallic sites[J]. Nature Communications, 2015, 6(1): 1-10 [47] WEI S, LI A, LIU J, et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms[J]. Nature Nanotechnology, 2018, 13(9): 856-861 [48] 王延吉, 孙蕾, 王淑芳, 等. 一种具有高活性催化性能的反应构件: CN104399537A[P]. 2016-08-24 WANG Yanji, SUN Lei, WANG Shufang, et al. Reaction member having high active catalysis performance: CN104399537A[P]. 2016-08-24(in Chinese) [49] 王淑芳, 关聪聪, 任小亮, 等. 一种在金属填料上直接负载活性金属的催化剂: CN107570146B[P]. 2020-01-14 WANG Shufang, GUAN Congcong, REN Xiaoliang, et al. Catalyst capable of directly loading reactive metals on metallic packing: CN107570146B[P]. 2020-01-14(in Chinese) [50] 王淑芳, 侯朋晨, 任小亮, 等. 一种硝基苯液相连续加氢合成苯胺的方法: CN107382745B[P]. 2019-09-06 WANG Shufang, HOU Pengchen, REN Xiaoliang, et al. Method for synthesizing phenylamine through nitrobenzene liquid phase continuous hydrogenation: CN107382745B[P]. 2019-09-06(in Chinese) [51] 王延吉, 杨嘉, 王淑芳, 等. 一种活性金属/金属填料催化剂在二硝基甲苯加氢合成甲苯二胺反应中的应用方法: CN107570147B[P]. 2019-12-10 WANG Yanji, YANG Jia, Wang Shufang, et al. Application method of active metal/metal filler catalyst in hydrogenation synthesis of TDA by DNT: CN107570147B[P]. 2019-12-10(in Chinese) [52] REN X, LI J, WANG S, et al. Preparation and hydrogenation performance of single atom Pt catalytic active sites anchored on the surface of metallic supports[J]. Catalysis Communications, 2019, 128: 105709 [53] 任小亮. 基于单原子铂催化剂的硝基化合物加氢反应过程研究[D]. 天津: 河北工业大学, 2021 REN Xiaoliang. Study on reaction process of nitro compounds hydrogenation based on single atom pt catalyst[D]. Tianjin: Hebei University of Technology, 2021(in Chinese) [54] ZHAO F, IKUSHIMA Y, ARAI M. Hydrogenation of nitrobenzene with supported platinum catalysts in supercritical carbon dioxide: Effects of pressure, solvent, and metal particle size[J]. Journal of Catalysis, 2004, 224(2): 479-483 [55] 郭力铭. 锆基金属材质表面纳米阵列负载铂催化剂制备及应用[D]. 天津: 河北工业大学, 2023 GUO Liming. Preparation and application of zirconium nanoarray supported platinum catalyst[D]. Tianjin: Hebei University of Technology, 2023(in Chinese) [56] 何涛, 马小波, 徐志宏, 等. 连续流微反应[J]. 化学进展, 2016, 28(6): 829-838 HE Tao, MA Xiaobo, XU Zhihong, et al. The continuous flow micro-reaction[J]. Progress in Chemistry, 2016, 28(6): 829-838(in Chinese) [57] KOBAYASHI J, MORI Y, OKAMOTO K, et al. A microfluidic device for conducting gas-liquid-solid hydrogenation reactions[J]. Science, 2004, 304(5675): 1305-1308 [58] 胡婧婧, 赵玉潮, 李淑莲, 等. 微反应器内硝基苯气-液-固三相催化加氢反应[J]. 化学反应工程与工艺, 2011, 27(2): 103-108 HU Jingjing, ZHAO Yuchao, LI Shulian, et al. Gas-liquid-solid three-phase catalytic hydrogenation of nitrobenzene in a microreactor[J]. Chemical Reaction Engineering and Technology, 2011, 27(2): 103-108(in Chinese) [59] 徐润, 胡志海, 聂红. 微反应器技术在Fischer-Tropsch合成中的应用进展[J]. 化工进展, 2016, 35(3): 685-691 XU Run, HU Zhihai, NIE Hong. Recent advances on Fischer-Tropsch synthesis in micro-reactor[J]. Chemical Industry and Engineering Progress, 2016, 35(3): 685-691(in Chinese) [60] ABDALLAH R, FUMEY B, MEILLE V, et al. Micro-structured reactors as a tool for chiral modifier screening in gas-liquid-solid asymmetric hydrogenations[J]. Catalysis Today, 2007, 125(1/2): 34-39 [61] TAN J, ZHANG J, LU Y, et al. Process intensification of catalytic hydrogenation of ethylanthraquinone with gas-liquid microdispersion[J]. AIChE Journal, 2012, 58(5): 1326-1335 [62] 屠佳成, 桑乐, 艾宁, 等. 连续微反应加氢技术在有机合成中的研究进展[J]. 化工学报, 2019, 70(10): 3859-3868 TU Jiacheng, SANG Le, AI Ning, et al. Research progress of continuous hydrogenation in organic synthesis[J]. CIESC Journal, 2019, 70(10): 3859-3868(in Chinese) [63] QIN J, CHEN Q, YANG C, et al. Research process on property and application of metal porous materials[J]. Journal of Alloys and Compounds, 2016, 654: 39-44 [64] REICHELT E, HEDDRICH M P, JAHN M, et al. Fiber based structured materials for catalytic applications[J]. Applied Catalysis A: General, 2014, 476: 78-90 [65] ZHU B, DUKE M, DUMÉE L, et al. Short review on porous metal membranes—Fabrication, commercial products, and applications[J]. Membranes, 2018, 8(3): 83 [66] XU Z, YU J. Hydrodynamics and mass transfer in a novel multi-airlifting membrane bioreactor[J]. Chemical Engineering Science, 2008, 63(7): 1941-1949 [67] SINGH H, SAXENA P, PURI Y. Materials selection and manufacturing of metal membranes for industrial applications[J]. Materials Letters, 2020, 269:127557 [68] REN X, WANG S, DING X, et al. Preparation and catalytic performance of active metal sintered membrane reactor anchored with Pt atoms[J]. RSC Advances, 2021, 11(5): 2848-2853 [69] ZHANG J, XIE W, LIANG Q, et al. Nano-fibrillated cellulose as a versatile carrier of Ru/Cu nanoparticles for the catalytic transfer hydrogenation of 5-hydroxymethyfural to 2, 5-bishydroxymethylfuran[J]. ChemistrySelect, 2019, 4(9): 2846-2850 [70] WANG Y, PRINSEN P, TRIANTAFYLLIDIS K S, et al. Batch versus continuous flow performance of supported mono-and bimetallic nickel catalysts for catalytic transfer hydrogenation of furfural in isopropanol[J]. ChemCatChem, 2018, 10(16): 3459-3468 [71] WANG J, XU L, NIE R, et al. Bifunctional CuNi/CoOx catalyst for mild-temperature in situ hydrodeoxygenation of fatty acids to alkanes using isopropanol as hydrogen source[J]. Fuel, 2020, 265: 116913 [72] WEI J, CAO X, WANG T, et al. Catalytic transfer hydrogenation of biomass-derived 5-hydroxymethylfurfural into 2, 5-bis(hydroxymethyl)furan over tunable Zr-based bimetallic catalysts[J]. Catalysis Science & Technology, 2018, 8(17): 4474-4484 [73] ZHOU K, CHEN J, CHENG Y, et al. Enhanced catalytic transfer hydrogenation of biomass-based furfural into 2-methylfuran over multifunctional Cu-Re bimetallic catalysts[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(44): 16624-16636 [74] ZHANG Z, PEI Z, CHEN H, et al. Catalytic in-situ hydrogenation of furfural over bimetallic Cu-Ni alloy catalysts in isopropanol[J]. Industrial & Engineering Chemistry Research, 2018, 57(12): 4225-4230 [75] JANG J H, RO I, CHRISTOPHER P, et al. A heterogeneous Pt-ReOx/C catalyst for making renewable adipates in one step from sugar acids[J]. ACS Catalysis, 2021, 11(1): 95-109 [76] SONAVANE S U, JAYARAM R V. Catalytic transfer hydrogenation of nitro arenes, aldehydes, and ketones with propanol and KOH/NaOH over mixed metal oxides[J]. Synthetic Communications, 2003, 33(5): 843-849 [77] MOHAPATRA S K, SONAVANE S U, JAYARAM R V, et al. Reductive cleavage of azo dyes and reduction of nitroarenes over trivalent iron incorporated hexagonal mesoporous aluminophosphate molecular sieves[J]. Applied Catalysis B: Environmental, 2003, 46(1): 155-163 [78] ASRI H, DAUTEL O, OUALI A. Terpyridine-Ru complexes noncovalently supported on cobalt magnetic nanoparticles for nitroarene transfer hydrogenation[J]. ACS Applied Nano Materials, 2020, 3(12): 11811-11818 [79] TIAN S, HU M, XU Q, et al. Single-atom Fe with Fe1N3 structure showing superior performances for both hydrogenation and transfer hydrogenation of nitrobenzene[J].Science China Materials, 2021, 64(3): 642-650 [80] 蔡可迎, 周颖梅. 羟基氧化铁和活性炭催化异丙醇还原芳香族硝基化合物制备芳胺[J]. 科学技术与工程, 2015, 15(16): 199-203 CAI Keying, ZHOU Yingmei. Reduction of aromatic nitro compounds to amines with propanol in the presence of iron oxyhydroxide and actived carbon[J]. Science Technology and Engineering, 2015, 15(16): 199-203(in Chinese) [81] LIU Y, MIAO W, TANG W, et al. Rhodium-terpyridine catalyzed transfer hydrogenation of aromatic nitro compounds in water[J]. Chemistry, 2021, 16(13): 1725-1729 [82] 王延吉, 刘伟, 任小亮, 等. 一种以异丙醇为氢源的二硝基甲苯加氢制备甲苯二胺的方法: CN113429301A[P]. 2021-09-24 WANG Yanji, LIU Wei, REN Xiaoliang, et al. Method for preparing toluenediamine through dinitrotoluene hydrogenation with isopropanol as hydrogen source: CN113429301A[P]. 2021-09-24(in Chinese) [83] 刘伟. 异丙醇为氢源的2,4-二硝基甲苯催化加氢反应研究[D]. 天津:河北工业大学, 2022 LIU Wei. Study on catalytic hydrogenation of 2,4-dinitrotoluene with isopropanol as hydrogen source[D]. Tianjin: Hebei University of Technology, 2022(in Chinese)
|