[1] 刘伟, 孙铁, 王灿, 等. FLUENT软件在石油化工设备中的应用[J]. 石油化工应用, 2008, 27(2):77-79 Liu Wei, Sun Tie, Wang Can, et al. Application of FLUENT in the equipment of petrochemical industry[J]. Petrochemical Industry Application, 2008, 27(2):77-79(in Chinese)
[2] 翟建华. 计算流体力学(CFD)的通用软件[J]. 河北科技大学学报, 2005, 26(2):160-165 Zhai Jianhua. Review of commercial CFD software[J]. Journal of Hebei University of Science and Technology, 2005, 26(2):160-165(in Chinese)
[3] 李勇, 刘志友, 安亦然. 介绍计算流体力学通用软件:Fluent[J]. 水动力学研究与进展:A辑, 2001, 16(2):254-258 Li Yong, Liu Zhiyou, An Yiran. A brief introduction to Fluent:A general purpose CFD code[J]. Journal of Hydrodynamics:A, 2001, 16(2):254-258(in Chinese)
[4] 刘霞, 葛新锋. FLUENT软件及其在我国的应用[J]. 能源研究与利用, 2003, (2):36-38 Liu Xia, Ge Xinfeng. FLUENT software and its application in china[J]. Energy Research and Utilization, 2003, (2):36-38(in Chinese)
[5] 纪兵兵, 陈金瓶. ANSYS ICEM CFD网格划分技术实例详解[M]. 北京:中国水利水电出版社, 2012 Ji Bingbing, Chen Jinping. A detailed example of ANSYS ICEM CFD meshing technology[M]. Beijing:China Water Power Press, 2012(in Chinese)
[6] 王瑞金, 张凯, 王刚. Fluent技术基础与应用实例[M]. 北京:清华大学出版社, 2007 Wang Ruijin, Zhang Kai, Wang Gang. Fluent technology foundation and application examples[M]. Beijing:Tsinghua University Press, 2007(in Chinese)
[7] 阮晓东, 范毓润, 宋向群, 等. 用流动可视化技术研究混合器内研究简报流场及混合效果[J]. 化工学报, 2000, 51(1):137-140 Ruan Xiaodong, Fan Yurun, Song Xiangqun, et al. Flow field and mixing result in mixer by flow visualization technique[J]. Journal of Chemical Industry and Engineering(China), 2000, 51(1):137-140(in Chinese)
[8] 张晨, 秦宏云, 徐钦, 等. CFD优化管线式高剪切混合器停留时间分布[J]. 化工进展, 2016, 35(10):3110-3117 Zhang Chen, Qin Hongyun, Xu Qin, et al. Optimization of residence time distribution of in-line high shear mixer by CFD[J]. Chemical Industry and Engineering Progress, 2016, 35(10):3110-3117(in Chinese)
[9] 徐双庆. 管线型高剪切混合器流体力学与返混特性[D]. 天津:天津大学, 2012 Xu Shuangqing. Hydrodynamics and backmixing characteristics of a pipeline high shear mixer[D]. Tianjin:Tianjin University, 2012(in Chinese)
[10] 付琳, 翟金国, 包春凤, 等. 聚氨酯低压混合器内流场的数值模拟和实验研究[J]. 化学工程, 2017, 45(5):56-61 Fu Lin, Zhai Jinguo, Bai Chunfeng, et al. Experimental study and numerical simulation of flow field in polyurethane low-pressure mixer[J]. Chemical Engineering, 2017, 45(5):56-61(in Chinese)
[11] 马洪彬, 郑勐, 胡艳凯. 椭圆螺旋管道混合器混合效果模拟研究[J]. 机械科学与技术, 2017, 36(5):755-760 Ma Hongbin, Zheng Meng, Hu Yankai. Numerical simulation for mixing uniformity of spiral oval duct mixer[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(5):755-760(in Chinese)
[12] 陈均凯. 静态管道混合器流场分布特性研究[D]. 山东青岛:青岛科技大学, 2015 Chen Junkai. Study on flow distribution characteristics of static pipe mixer[D]. Shandong Qingdao:Qingdao University of Science and Technology, 2015(in Chinese)
[13] 郭亚. 立式三分螺旋折流板冷凝器换热性能的试验研究[D]. 南京:东南大学, 2015 Guo Ya. Experimental study on heat transfer performance of vertical three-way helical baffle condenser[D]. Nanjing:Southeast University, 2015(in Chinese)
[14] Hornyik K. Heat exchangers-thermal-hydraulic fundamentals and design[J]. Nuclear Technology, 1982, 58(3):556
[15] Bergles A E, Webb R L. Heat transfer enhancement:Second generation technology[J]. Mech Eng (United States), 1984, 105:6
[16] Bergles A E. Some perspectives on enhanced heat transfer:Second-Generation heat transfer technology[J]. Journal of Heat Transfer, 1988, 110(4b):1082-1096
[17] 韩冰, 徐之平. 强化换热的方法及新进展[J]. 能源研究与信息, 2008, 24(4):233-237 Han Bing, Xu Zhiping. New technologies and advances in heat transfer enhancement[J]. Energy Research and Information, 2008, 24(4):233-237(in Chinese)
[18] 刘春江, 阮仁君, 郭凯, 等. 矩形通道中涡流发生器换热性能的实验研究与模拟[J]. 天津大学学报:自然科学与工程技术版, 2017, 50(1):71-76 Liu Chunjiang, Ruan Renjun, Guo Kai, et al. Experiment and simulation of heat transfer in a rectangular channel with vortex generator[J]. Journal of Tianjin University:Science and Technology, 2017, 50(1):71-76(in Chinese)
[19] 高猛, 周国兵. 几种涡流发生器对矩形通道流阻和传热性能影响的数值模拟[J]. 中国电机工程学报, 2010, 30(35):55-60 Gao Meng, Zhou Guobing. Numerical simulations on the effect of several vortex generators in rectangular channel on flow resistance and heat transfer performances[J]. Proceedings of the CSEE, 2010, 30(35):55-60(in Chinese)
[20] 刘超. 装有纵向涡流产生器的矩形微通道内的传热与流动的实验和模拟研究[D]. 武汉:华中科技大学, 2011 Liu Chao. Experimental and numerical simulations of heat transfer and flow in rectangular microchannels with longitudinal vortex generators[D]. Wuhan:Huazhong University of Science and Technology, 2011(in Chinese)
[21] 康蕊, 厉彦忠, 杨宇杰, 等. 轴向导热对板翅式换热器传热性能的影响[J]. 西安交通大学学报, 2017, 51(2):140-148 Kang Rui, Li Yanzhong, Yang Yujie, et al. Performance evaluation of plate-fin heat exchanger considering effect of axial heat conduction[J]. Journal of Xi'an Jiaotong University, 2017, 51(2):140-148(in Chinese)
[22] 代中元. 基于FLUENT的某型号板翅式换热器的性能数值模拟及其结构优化[D]. 武汉:武汉理工大学, 2013 Dai Zhongyuan. Numerical simulation of the performance of a certain plate-fin heat exchanger based on FLUENT and its structural optimization[D]. Wuhan:Wuhan University of Technology, 2013(in Chinese)
[23] 文键, 李亚梅, 王斯民, 等. 板翅式换热器平直翅片表面流动及传热特性[J]. 化学工程, 2012, 40(10):25-28, 39 Wen Jian, Li Yamei, Wang Simin, et al. Fluid flow and heat transfer characteristics in plain fins of plate-fin heat exchanger[J]. Chemical Engineering(China), 2012, 40(10):25-28, 39(in Chinese)
[24] El Maakoul A, Laknizi A, Saadeddine S, et al. Numerical design and investigation of heat transfer enhancement and performance for an annulus with continuous helical baffles in a double-pipe heat exchanger[J]. Energy Conversion and Management, 2017, 133:76-86
[25] Ji S, Du W, Wang P, et al. Numerical investigation on double shell-pass shell-and-tube heat exchanger with continuous helical baffles[J]. Journal of Thermodynamics, 2011:1-7
[26] Saeedan M, Solaimany Nazar A R, Abbasi Y, et al. CFD Investigation and neutral network modeling of heat transfer and pressure drop of nanofluids in double pipe helically baffled heat exchanger with a 3D fined tube[J]. Applied Thermal Engineering, 2016, 100:721-729
[27] 盖旭东, 崔爱莉, 金涌, 等. 新型化学反应器研究的前沿课题[J]. 现代化工, 1998, 18(3):13-16 Ge Xudong Cui Aili, Jin Yong, et al. Frontal topics on novel reactors[J]. Modern Chemical Industry, 1998, 18(3):13-16(in Chinese)
[28] 罗鹏. 新型特殊用途化学反应器若干问题的研究[D]. 沈阳:东北大学, 2005 Luo Peng. Research on several issues of new type special purpose chemical reactor[D]. Shenyang:Northeastern University, 2005(in Chinese)
[29] 刘甜甜, 李玉刚, 郑世清. CFD在自吸式加氢反应器流场研究中的应用[J]. 化工进展, 2017, 36(3):846-851 Liu Tiantian, Li Yugang, Zheng Shiqing. Flow field characteristics of gas-inducing hydrogenation reactor with CFD simulation[J]. Chemical Industry and Engineering Progress, 2017, 36(3):846-851(in Chinese)
[30] 刘甜甜, 李玉刚, 孔令启, 等. 二硝基甲苯加氢反应器气液两相的数值模拟[J]. 计算机与应用化学, 2016, 33(7):783-787 Liu Tiantian, Li Yugang, Kong Lingqi, et al. Numerical simulation of gas-liquid flow of hydrogenation reactor of dinitrotoluene[J]. Computers and Applied Chemistry, 2016, 33(7):783-787(in Chinese)
[31] 杨竟宪, 张海涛. 新型一体化脱硫工艺反应器内流场的数值模拟研究[J]. 环境污染与防治, 2016, 38(12):82-88 Yang Jingxian, Zhang Haitao. Numerical simulation of flow field in the novel integrated desulphurization reactor[J]. Environmental Pollution & Control, 2016, 38(12):82-88(in Chinese)
[32] 杨竟宪. NID半干法脱硫工艺和脱硫反应器的模拟与优化[D]. 上海:华东理工大学, 2016 Yang Jingxian. Simulation and optimization of NID semi-dry desulfurization process and desulfurization reactor[D]. Shanghai:East China University of Science and Technology, 2016(in Chinese)
[33] Zhang Z, Ji S. Numerical simulation of particle/monolithic two-stage catalyst bed reactor with beds-interspace distributed dioxygen feeding for oxidative coupling of methane[J]. Computers & Chemical Engineering, 2016, 90:247-259
[34] Zhang Z, Guo Z, Ji S. Numerical simulation of particle/monolithic two-stage catalyst bed reactor for oxidative coupling of methane[J]. Chemical Engineering Research and Design, 2015, 104:390-399
[35] Zhang Z, Guo Z, Ji S. Numerical simulation of fixed bed reactor for oxidative coupling of methane over monolithic catalyst[J]. Chinese Journal of Chemical Engineering, 2015, 23(10):1627-1633
[36] 张照. 甲烷氧化偶联制乙烯反应器的数值模拟研究[D]. 北京:北京化工大学, 2015 Zhang Zhao. Numerical simulation of ethylene reactor for ethylene oxidation coupling[D]. Beijing:Beijing University of Chemical Technology, 2015(in Chinese)
[37] Mokhtari F, Bouabdallah A, Merah A, et al. Three-Dimensional study of the pressure field and advantages of hemispherical crucible in silicon Czochralski crystal growth[J]. Crystal Research and Technology, 2010, 45(6):573-582
[38] Enayati H, Chandy A J, Braun M J, et al. 3D large eddy simulation (LES) calculations and experiments of natural convection in a laterally-heated cylindrical enclosure for crystal growth[J]. International Journal of Thermal Sciences, 2017, 116:1-21
[39] Chen D, Wang B, Sirkar K K. Hydrodynamic modeling of porous hollow fiber anti-solvent crystallizer for continuous production of drug crystals[J]. Journal of Membrane Science, 2018, 556:185-195
|