[an error occurred while processing this directive]
化学工业与工程
 首页 |  在线投稿 |  期刊介绍 |  编 委 会 |  投稿指南 |  期刊订阅 |  下载中心 |  出版伦理 |  联系我们 |  English
化学工业与工程 2016, Vol. 33 Issue (4) :49-55    DOI: 10.13353/j.issn.1004.9533.20141126
化工模拟与计算 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << | >>
基于神经网络和遗传算法的螺旋折流板换热器性能预测
孙永利, 王华金, 郝丽, 肖晓明
天津大学化工学院, 天津 300072
Performance Prediction of Shell-and-Tube Heat Exchangers with Helical Baffles Using Multilayer Perception Neural Networks Optimized with Genetic Algorithm
Sun Yongli, Wang Huajin, Hao Li, Xiao Xiaoming
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

摘要
参考文献
相关文章
Download: PDF (2491KB)   HTML ()   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 

将人工神经网络(ANN)应用于非连续螺旋折流板换热器的壳程换热和流阻分析。中试试验研究了具有3个螺旋角和2种管型的换热器。作为人工神经网络最常用的一种类型,将多层感知器神经网络(MLP)应用于本研究,使用一定的实验数据进行网络训练及预测。应用遗传算法(GA)对MLP的初始权值和阈值进行优化,预测结果精确。通过比较不同网络结构的预测误差来选择最适宜的网络结构为9-7-5-2。和关联结果比较可知MLP-GA网络对于换热器性能预测更加适合。此外,当使用MLP-GA方法在训练数据范围以外对壳程换热系数和压降进行预测时,网络预测结果和实验结果吻合程度也较高。因此,MLP-GA混合算法能够用来预测螺旋折流板管壳式换热器的传热和水力学性能。

Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
孙永利
王华金
郝丽
肖晓明
关键词螺旋折流板换热器   传热   多层感知   遗传算法     
Abstract

In this paper, an artificial neural network (ANN) was applied for shell-side heat transfer and flow resistance analysis of shell-and-tube heat exchangers with non-continuous helical baffles. Heat exchangers with three helical angles and two types of tubes were experimentally investigated. One of the commonly used types of neural networks, the multilayer perception (MLP), was trained with limited experimental data. The genetic algorithm (GA) was employed to optimize the initial weights and biases of the MLP network, which showed more accuracy in prediction. Different network configurations were also studied to search for a relatively better network for the prediction. Comparisons with the correlations demonstrate the superiority of the MLP-GA network. Furthermore, the network yielded agreeable results when it was used for predicting the shell-side heat transfer rate and pressure drop outside the range of the experiments. It is recommended that the MLP-GA combined method might be used to predict the thermal and hydraulic performance of shell-and-tube heat exchangers with helical baffles.

Keywordsshell-and-tube heat exchanger with helical baffles;   heat transfer;   multilayer perception;   genetic algorithm     
Received 2014-05-23;
Corresponding Authors: 郝丽,E-mail:haolitju@163.com。     Email: haolitju@163.com
About author: 孙永利(1967-),男,博士,副研究员,研究方向为化工传质与分离工程。
引用本文:   
孙永利, 王华金, 郝丽, 肖晓明.基于神经网络和遗传算法的螺旋折流板换热器性能预测[J].  化学工业与工程, 2016,33(4): 49-55
Sun Yongli, Wang Huajin, Hao Li, Xiao Xiaoming.Performance Prediction of Shell-and-Tube Heat Exchangers with Helical Baffles Using Multilayer Perception Neural Networks Optimized with Genetic Algorithm[J].  Chemcial Industry and Engineering, 2016,33(4): 49-55
Copyright 2010 by 化学工业与工程