[an error occurred while processing this directive]
化学工业与工程
 首页 |  在线投稿 |  期刊介绍 |  编 委 会 |  投稿指南 |  期刊订阅 |  下载中心 |  出版伦理 |  联系我们 |  English
化学工业与工程 2019, Vol. 36 Issue (4) :42-50    DOI: 10.13353/j.issn.1004.9533.20181012
化工模拟与计算 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << | >>
4种智能算法在相平衡数据拟合中的应用
朱炜1, 刘斌1, 侯海云1, 李庆1, 王新元1, 樊增禄2
1. 西安工程大学环境与化学工程学院, 西安 710048;
2. 西安工程大学纺织与材料工程学院, 西安 710048
Application of Four Intelligent Algorithms inPhase Equilibrium Data Fitting
Zhu Wei1, Liu bin1, Hou Haiyun1, Li Qing1, Wang Xinyuan1, Fan Zenglu2
1. School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, Shanxi, China;
2. School of Textiles and Materials, Xi'an Polytechnic University, Xi'an 710048, Shanxi, China

摘要
参考文献
相关文章
Download: PDF (4139KB)   HTML ()   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 针对Marquardt-Levenberg法应用于多元物系相平衡数据拟合时,模型参数剧增,初值难以设定的难题,将4种智能算法,即遗传算法、神经网络,退火算法及粒子群算法,应用于相平衡数据的拟合。以正丙醇(1)+乙腈(2)二元物系汽液相平衡数据的Wilson拟合和甲醇(1)+乙腈(2)+1-乙基-3-甲基咪唑四氟硼酸盐(3)三元物系汽液相平衡数据的NRTL拟合为例,系统讨论了4种算法在应用时的主要影响因素,并将所得结果进行了分析和比较。结果表明遗传算法和粒子群算法可以较好地解决初值难设的问题,并且给出了每种算法的适用范围和使用建议。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
朱炜
刘斌
侯海云
李庆
王新元
樊增禄
关键词相平衡   参数估值   遗传算法   神经网络   退火算法   粒子群算法     
Abstract: The Marquardt-Levenberg(ML) algorithm is the most commonly used algorithm for phase equilibrium data fitting. However, this algorithm belongs to the local optimization algorithm. When ML algorithm was applied to multi-component system phase equilibrium data fitting, it is difficult to find the appropriate initial values for the general thermodynamic researchers owing to model parameters increasing sharply. In this paper, four kinds of intelligent algorithms, namely, genetic algorithm, neural network, annealing algorithm and particle swarm algorithm were applied to fitting the vapor-liquid equilibrium data of n-propanol (1)+acetonitrile (2) binary system by Wilson model and fitting the vapor-liquid equilibrium data of methanol (1)+acetonitrile (2)+1-ethyl-3-methylimidazolium tetrafluoroborate (3) ([EMIM] [BF4]) ternary system by NRTL model, respectively. The mainly influencing factors of four algorithms on the phase equilibrium data fitting application were discussed. The results were also analyzed and compared. On the basis of above work, the scope of the application and the use of recommendations of each method were proposed.
Keywordsphase equilibria;   parameter estimation;   genetic algorithm;   neural networks;   annealing algorithm;   particle swarm algorithm     
Received 2018-03-10;
Fund:陕西省教育厅科学研究项目(17JK0348);西安工程大学创新创业训练计划项目(2017086);国家自然科学青年科学基金项目(2160030548);陕西科技厅国际科技合作与交流计划项目(2017KW-026)。
Corresponding Authors: 樊增禄,E-mail:362284029@qq.com。     Email: 362284029@qq.com
About author: 朱炜(1982-),男,博士,讲师,现从事分子热力学,量化计算和分子模拟方面的研究。
引用本文:   
朱炜, 刘斌, 侯海云, 李庆, 王新元, 樊增禄.4种智能算法在相平衡数据拟合中的应用[J].  化学工业与工程, 2019,36(4): 42-50
Zhu Wei, Liu bin, Hou Haiyun, Li Qing, Wang Xinyuan, Fan Zenglu.Application of Four Intelligent Algorithms inPhase Equilibrium Data Fitting[J].  Chemcial Industry and Engineering, 2019,36(4): 42-50
Copyright 2010 by 化学工业与工程