[1] KAYUKOVA G P, GUBAIDULLIN A T, PETROV S M, et al. Changes of asphaltenes’ structural phase characteristics in the process of conversion of heavy oil in the hydrothermal catalytic system[J]. Energy & Fuels, 2016, 30(2): 773-783 [2] MULLINS O C. The modified yen model[J]. Energy & Fuels, 2010, 24(4): 2179-2207 [3] 李生华,刘晨光,阙国和,等.渣油热反应体系中第二液相的形成机制 [J]. 燃料化学学报,1998,26(5): 40-47 LI Shenghua, LIU Chenguang, QUE Guohe, et al. Formation mechanisms of second liquid phases in thermal reaction systems of vacuum residue[J]. Journal of Fuel Chemistry and Technology, 1998,26(5): 40-47(in chinese) [4] ORTEGA G F J, MAR J E. Heavy oil hydrocracking on a liquid catalyst[J]. Energy & Fuels, 2017, 31(8): 7995-8000 [5] 李英峰, 卢贵武, 孙为, 等. 石油沥青质缔合体的分子动力学研究[J]. 石油学报(石油加工), 2007, 23(4):25-31 LI Yingfeng, LU Guiwu, SUN Wei, et al. Study on the molecular dynamics of petroleum-derived asphaltene aggregate[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2007, 23(4): 25-31(in Chinese) [6] DICKIE J P, YEN T. Macrostructures of the asphaltic fractions by various instrumental methods[J]. Analytical Chemistry, 1967, 39(14): 1847-1852 [7] ALSHAREEF A H. Asphaltenes: Definition, properties, and reactions of model compounds[J]. Energy & Fuels, 2020, 34(1): 16-30 [8] GAWEL I, BOCIARSKA D, BISKUPSKI P. Effect of asphaltenes on hydroprocessing of heavy oils and residua[J]. Applied Catalysis A: General, 2005, 295(1): 89-94 [9] TREJO F, ANCHEYTA J, CENTENO G, et al. Effect of hydrotreating conditions on Maya asphaltenes composition and structural parameters[J]. Catalysis Today, 2005, 109(1/2/3/4): 178-184 [10] ANCHEYTA J, CENTENO G, TREJO F, et al. Asphaltene characterization as function of time on-stream during hydroprocessing of Maya crude[J]. Catalysis Today, 2005, 109(1/2/3/4): 162-166 [11] DU J, DENG W, LI C, et al. Reactivity and structure changes of coal tar asphaltene during slurry-phase hydrocracking[J]. Energy & Fuels, 2017, 31(2): 1858-1865 [12] SHAO R, SHEN Z, LI D, et al. Investigation on composition and structure of asphaltenes during low-temperature coal tar hydrotreatment under various reaction pressures[J]. Journal of Analytical and Applied Pyrolysis, 2018, 136: 44-52 [13] PEI L, LI D, LIU X, et al. Investigation on asphaltenes structures during low temperature coal tar hydrotreatment under various reaction temperatures[J]. Energy & Fuels, 2017, 31(5): 4705-4713 [14] SUN Z, WU Y, ZHENG M, et al. Investigation on asphaltene compositions and structures during hydroprocessing of low-temperature coal tar at different reaction temperatures on Ni-Mo-W/γ-Al2O3 catalysts[J].Reaction Kinetics, Mechanisms and Catalysis, 2020, 129(1): 443-456 [15] 陈晨, 李海杰, 白杨, 等. 预硫化温度对煤直接液化催化剂组分转变及其催化性能的影响[J]. 燃料化学学报, 2022, 50(1): 54-62 CHEN Chen, LI Haijie, BAI Yang, et al. Effect of sulfidation temperature on component transformation and catalytic performance of direct coal liquefaction catalyst[J]. Journal of Fuel Chemistry and Technology, 2022, 50(1): 54-62(in Chinese) [16] 王现元, 张涛, 张龙力, 等. 渣油加氢反应样品中含铁和含钙化合物溶解性能研究[J]. 燃料化学学报, 2021, 49(6):771-779 WANG Xianyuan, ZHANG Tao, ZHANG Longli, et al. Study of the dissolution performance of ferrum and calcium compounds in residue hydrogenation reaction samples[J]. Journal of Fuel Chemistry and Technology, 2021, 49(6): 771-779(in Chinese) [17] KELEMEN S R, GEORGE G N, GORBATY M L. Direct determination and quantification of sulphur forms in heavy petroleum and coals[J]. Fuel, 1990, 69(8): 939-944 [18] GENG W, KUMABE Y, NAKAJIMA T, et al. Analysis of hydrothermally-treated and weathered coals by X-ray photoelectron spectroscopy (XPS)[J]. Fuel, 2009, 88(4): 644-649 [19] HAN Z, SUN Y, YANG C. Effect of initial hydrogen pressure on hydrogenation reaction of asphaltenes in Tahe River[J]. Petroleum Processing and Petrochemicals, 2014,45(5): 21-24 [20] LIU D, LI Z, FU Y, et al. Investigation on asphaltene structures during Venezuela heavy oil hydrocracking under various hydrogen pressures[J]. Energy & Fuels, 2013, 27(7): 3692-3698 [21] BROWN J R, KASRAI M, BANCROFT G M, et al. Direct identification of organic sulphur species in Rasa coal from sulphur L-edge X-ray absorption near-edge spectra[J]. Fuel, 1992, 71(6): 649-653 [22] SUN Z, LI D, MA H, et al. Characterization of asphaltene isolated from low-temperature coal tar[J]. Fuel Processing Technology, 2015, 138: 413-418 [23] SUN Y, YANG C, ZHAO H, et al. Influence of asphaltene on the residue hydrotreating reaction[J]. Energy & Fuels, 2010, 24(9): 5008-5011 [24] CALEMMA V, IWANSKI P, NALI M, et al. Structural characterization of asphaltenes of different origins[J]. Energy & Fuels, 1995, 9(2): 225-230 [25] NGUYEN N T, KANG K, LEE C W, et al. Structure comparison of asphaltene aggregates from hydrothermal and catalytic hydrothermal cracking of C5-isolated asphaltene[J]. Fuel, 2019, 235: 677-686 [26] SHIROKOFF J W, SIDDIQUI M N, ALI M F. Characterization of the structure of Saudi crude asphaltenes by X-ray diffraction[J]. Energy & Fuels, 1997, 11(3): 561-565 [27] TIAN K P, MOHAMED A R, BHATIA S. Catalytic upgrading of petroleum residual oil by hydrotreating catalysts: A comparison between dispersed and supported catalysts[J]. Fuel, 1998, 77(11): 1221-1227 [28] 蔡新恒, 龙军, 任强, 等. 沥青质分子聚集体的聚集内因[J]. 石油学报(石油加工), 2019, 35(5): 920-928 CAI Xinheng, LONG Jun, REN Qiang, et al. Aggregation mechanism of asphaltene molecular aggregates[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2019, 35(5): 920-928(in Chinese) [29] 任强, 龙军, 代振宇, 等. 沥青质分子聚集体中π-π相互作用的研究[J]. 石油学报(石油加工), 2019, 35(4):751-758 REN Qiang, LONG Jun, DAI Zhenyu, et al. Theoretical study on π-π interactions in asphaltene molecular aggregates[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2019, 35(4): 751-758(in Chinese) [30] KHORASHEH F, GRAY M R. High-pressure thermal cracking of n-hexadecane in aromatic solvents[J]. Industrial & Engineering Chemistry Research, 1993, 32(9): 1864-1876 [31] HECK R H, DIGUISEPPI F T. Kinetic and mechanistic effects in resid hydrocracking[J]. Energy & Fuels, 1994, 8(3): 557-560 [32] HECK R H, RANKEL L A, DIGUISEPPI F T. Conversion of petroleum residual from Maya crude: Effects of H-donors, hydrogen pressure and catalyst[J]. Fuel Processing Technology, 1992, 30(1): 69-81
|