[1] LIU L, LI M, CHEN F, et al. Recent advances on single-atom catalysts for CO2 reduction[J]. Small Structures, 2022, doi:10.1002/sstr.202200188 [2] Zhang W, Hu Y, Ma L, et al. Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals[J]. Adv Sci (Weinh), 2018, doi:10.1002/advs.201700275 [3] KHEZRI B, FISHER A C, PUMERA M. CO2 reduction: The quest for electrocatalytic materials[J]. Journal of Materials Chemistry A, 2017, 5(18): 8230-8246 [4] WANG M, LI M, LIU Y, et al. Structural regulation of single-atomic site catalysts for enhanced electrocatalytic CO2 reduction[J].Nano Research, 2022, 15(6): 4925-4941 [5] HUAN T, RANJBAR N, ROUSSE G, et al. Electrochemical reduction of CO2 catalyzed by Fe-N-C materials: A structure-selectivity study[J]. ACS Catalysis, 2017, 7(3): 1520-1525 [6] SHE X, WANG Y, XU H, et al. Challenges and opportunities in electrocatalytic CO2 reduction to chemicals and fuels[J]. Angewandte Chemie International Edition, 2022, doi:10.1002/anie.202211396 [7] QIAO B, WANG A, YANG X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx[J]. Nature Chemistry, 2011, 3(8): 634-641 [8] ZHANG Y, JIAO L, YANG W, et al. Rational fabrication of low-coordinate single-atom Ni electrocatalysts by MOFs for highly selective CO2 reduction[J]. Angewandte Chemie (International Ed in English), 2021, 60(14): 7607-7611 [9] JIANG K, SIAHROSTAMI S, ZHENG T, et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction[J]. Energy & Environmental Science, 2018, 11(4): 893-903 [10] PAN F, ZHANG H, LIU K, et al. Unveiling active sites of CO2 reduction on nitrogen-coordinated and atomically dispersed iron and cobalt catalysts[J]. ACS Catalysis, 2018, 8(4): 3116-3122 [11] ZHAO Y, LIANG J, WANG C, et al. Tunable and efficient tin modified nitrogen-doped carbon nanofibers for electrochemical reduction of aqueous carbon dioxide[J]. Advanced Energy Materials, 2018, doi:10.1002/aenm.201702524 [12] YAN C, LI H, YE Y, et al. Coordinatively unsaturated nickel-nitrogen sites towards selective and high-rate CO2 electroreduction[J]. Energy & Environmental Science, 2018, 11(5): 1204-1210 [13] FU X, ZHANG P, SUN T, et al. Atomically dispersed Ni-N3 sites on highly defective micro-mesoporous carbon for superior CO2 electroreduction[J]. Small, 2022, doi:10.1002/smll.202107997 [14] LIN L, LI H, WANG Y, et al. Temperature-dependent CO2 electroreduction over Fe-N-C and Ni-N-C single-atom catalysts[J]. Angewandte Chemie International Edition, 2021, 60(51): 26582-26586 [15] WANG Q, INA T, CHEN W, et al. Evolution of Zn(II) single atom catalyst sites during the pyrolysis-induced transformation of ZIF-8 to N-doped carbons[J]. Science Bulletin, 2020, 65(20): 1743-1751 [16] XIONG W, LI H, WANG H, et al. Hollow mesoporous carbon sphere loaded Ni-N4 single-atom: Support structure study for CO2 electrocatalytic reduction catalyst[J]. Small, 2020, doi:10.1002/smll.202003943 [17] CHEN X, LIU W, SUN Y, et al. KOH-enabled axial-oxygen coordinated Ni single-atom catalyst for efficient electrocatalytic CO2 reduction[J]. Small Methods, 2023, doi:10.1002/smtd.202201311 [18] JIA C, LI S, ZHAO Y, et al. Nitrogen vacancy induced coordinative reconstruction of single-atom Ni catalyst for efficient electrochemical CO2 reduction[J]. Advanced Functional Materials, 2021, doi:10.1002/adfm.202107072 [19] YANG H, LIN Q, ZHANG C, et al. Carbon dioxide electroreduction on single-atom nickel decorated carbon membranes with industry compatible current densities[J]. Nature Communications, 2020, 11(1): 1-8 [20] REN W, TAN X, YANG W, et al. Isolated Diatomic Ni-Fe metal-nitrogen sites for synergistic electroreduction of CO2[J]. Angew Chem Int Ed Engl, 2019, 58(21): 6972-6976 [21] GENG Z, CAO Y, CHEN W, et al. Regulating the coordination environment of Co single atoms for achieving efficient electrocatalytic activity in CO2 reduction[J]. Applied Catalysis B: Environmental, 2019, 240: 234-240
|