[1] HUANG Q, ZHANG W, YANG C. Modeling transport phenomena and reactions in a pilot slurry airlift loop reactor for direct coal liquefaction[J]. Chemical Engineering Science, 2015, 135: 441-451 [2] WANG T, WANG J, JIN Y. Slurry reactors for gas-to-liquid processes: A review[J]. Industrial & Engineering Chemistry Research, 2007, 46(18): 5824-5847 [3] VIOTTI P, LUCIANO A, MANCINI G, et al. A wastewater treatment using a biofilm airlift suspension reactor with biomass attached to supports: A numerical model[J]. International Journal of Environmental Science and Technology, 2014, 11(3): 571-588 [4] DE JESUS S S, MOREIRA N J, MACIEL F R. Hydrodynamics and mass transfer in bubble column, conventional airlift, stirred airlift and stirred tank bioreactors, using viscous fluid: A comparative study[J]. Biochemical Engineering Journal, 2017, 118: 70-81 [5] HOL A, VAN DER WEIJDEN R D, VAN WEERT G, et al. Bio-reduction of pyrite investigated in a gas lift loop reactor[J]. International Journal of Mineral Processing, 2010, 94(3/4): 140-146 [6] DAMODAR R A, YOU S, OU S. Coupling of membrane separation with photocatalytic slurry reactor for advanced dye wastewater treatment[J]. Separation and Purification Technology, 2010, 76(1): 64-71 [7] RENGEL A, ZOUGHAIB A, DRON D, et al. Hydrodynamic study of an internal airlift reactor for microalgae culture[J]. Applied Microbiology and Biotechnology, 2012, 93(1): 117-129 [8] AL-QODAH Z, LAFI W. Modeling of antibiotics production in magneto three-phase airlift fermenter[J]. Biochemical Engineering Journal, 2001, 7(1): 7-16 [9] GUETTEL R, KUNZ U, TUREK T. Reactors for Fischer-Tropsch synthesis[J]. Chemical Engineering & Technology, 2008, 31(5): 746-754 [10] HUANG Q, YAO L, LIU T, et al. Simulation of the light evolution in an annular photobioreactor for the cultivation of Porphyridium cruentum[J]. Chemical Engineering Science, 2012, 84: 718-726 [11] VAN BENTHUM W A J, VAN DER LANS R G J M, VAN LOOSDRECHT M C M, et al. The biofilm airlift suspension extension reactor-Ⅱ: Three-phase hydrodynamics[J]. Chemical Engineering Science, 2000, 55(3): 699-711 [12] MOHANTY K, DAS D, BISWAS M N. Treatment of phenolic wastewater in a novel multi-stage external loop airlift reactor using activated carbon[J]. Separation and Purification Technology, 2008, 58(3): 311-319 [13] DE KEE D, CHHABRA R P. A photographic study of shapes of bubbles and coalescence in non-Newtonian polymer solutions[J]. Rheologica Acta, 1988, 27(6): 656-660 [14] LAU Y M, DEEN N G, KUIPERS J A M. Development of an image measurement technique for size distribution in dense bubbly flows[J]. Chemical Engineering Science, 2013, 94: 20-29 [15] BAI F, WANG L, HUANG H, et al. Oxygen mass-transfer performance of low viscosity gas-liquid-solid system in a split-cylinder airlift bioreactor[J]. Biotechnology Letters, 2001, 23(14): 1109-1113 [16] CERRI M O, FUTIWAKI L, JESUS C D F, et al. Average shear rate for non-Newtonian fluids in a concentric-tube airlift bioreactor[J]. Biochemical Engineering Journal, 2008, 39(1): 51-57 [17] RODRIGUEZ G Y, VALVERDE-RAMÍREZ M, MENDES C E, et al. Global performance parameters for different pneumatic bioreactors operating with water and glycerol solution: Experimental data and CFD simulation[J]. Bioprocess and Biosystems Engineering, 2015, 38(11): 2063-2075 [18] KUMAR N, BANSAL A, GUPTA R. Shear rate and mass transfer coefficient in internal loop airlift reactors involving non-Newtonian fluids[J]. Chemical Engineering Research and Design, 2018, 136: 315-323 [19] 谷奎庆. 三相连续环流反应器液相传质及混合特性研究[D]. 北京: 北京化工大学,2007 GU Kuiqing. Study on mass transfer and mixing characteristics of liquid phase in three-phase continuous loop reactor[D]. Beijing: Beijing University of Chemical Technology, 2007 (in Chinese) [20] 杨辉. 双喷嘴连续气泡生成与聚并行为的数值模拟[D]. 天津:天津大学,2016 YANG Hui. Numerical simulation of continuous bubble formation and coalescence behavior with two nozzles[D]. Tianjin: Tianjin University, 2016(in Chinese) [21] GAVRILESCU M, TUDOSE R Z. Effects of downcomer-to-riser cross sectional area ratio on operation behaviour of external-loop airlift bioreactors[J]. Bioprocess Engineering, 1996, 15(2): 77-85 [22] 冯加和. 硅油光-热老化气升式外环流反应器流动特性研究[D]. 天津:天津大学,2014 FENG Jiahe. Study on flow characteristics of air-lift external loop reactor with photo-thermal aging of silicone oil[D]. Tianjin: Tianjin University, 2014 (in Chinese) [23] 徐斌. 气升式内环流生物反应器的Fluent模拟研究[D]. 长沙: 湖南大学,2017 XU Bin. Fluent simulation of airlift internal loop bioreactor[D]. Changsha: Hunan University, 2017 (in Chinese) [24] 杨志方, 杜峰, 于清江, 等. 78.5升气升式环流反应器内构件优化[J]. 化工进展, 2015, 34(3): 659-663 YANG Zhifang, DU Feng, YU Qingjiang, et al. Internals optimization of 78.5L airlift loop reactor[J]. Chemical Industry and Engineering Progress, 2015, 34(3): 659-663(in Chinese) [25] 陶金亮, 黄建刚, 肖航, 等. 级间隙高度和表观气速对多级环流反应器混合和传质的影响[J]. 化工学报, 2018, 69(7):2878-2889, 3301 TAO Jinliang, HUANG Jiangang, XIAO Hang, et al. Influences of interstage height and superficial gas velocity in multistage internal airlift loop reactor on performance of mixing and mass transfer[J]. CIESC Journal, 2018, 69(7):2878-2889, 3301(in Chinese) [26] RUSSELL A B, THOMAS C R, LILLY M D. The influence of vessel height and top-section size on the hydrodynamic characteristics of airlift fermentors[J]. Biotechnology and Bioengineering, 1994, 43(1): 69-76 [27] LUKIĆ N L, ŠIJAČKI I M, KOJIĆ P S, et al. Enhanced mass transfer in a novel external-loop airlift reactor with self-agitated impellers[J]. Biochemical Engineering Journal, 2017, 118: 53-63 [28] CHISTI Y, JAUREGUI-HAZA U J. Oxygen transfer and mixing in mechanically agitated airlift bioreactors[J]. Biochemical Engineering Journal, 2002, 10(2): 143-153 [29] ZHANG X, GUO K, QI W, et al. Gas holdup, bubble behaviour, and mass transfer characteristics in a two-stage internal loop airlift reactor with different screens[J]. The Canadian Journal of Chemical Engineering, 2017, 95(6): 1202-1212 [30] RÄSÄNEN M, EERIKÄINEN T, OJAMO H. Characterization and hydrodynamics of a novel helix airlift reactor[J]. Chemical Engineering and Processing: Process Intensification, 2016, 108: 44-57 [31] ZHENG Z, CHEN Y, ZHAN X, et al. Mass transfer intensification in a novel airlift reactor assembly with helical sieve plates[J]. Chemical Engineering Journal, 2018, 342: 61-70 [32] LUO L, YUAN J, XIE P, et al. Hydrodynamics and mass transfer characteristics in an internal loop airlift reactor with sieve plates[J]. Chemical Engineering Research and Design, 2013, 91(12): 2377-2388 [33] YU W, WANG T, LIU M, et al. Liquid backmixing and particle distribution in a novel multistage internal-loop airlift slurry reactor[J]. Industrial & Engineering Chemistry Research, 2008, 47(11): 3974-3982 [34] DREHER A J, KRISHNA R. Liquid-phase backmixing in bubble columns, structured by introduction of partition plates[J]. Catalysis Today, 2001, 69(1/2/3/4): 165-170 [35] ZHANG L, PAN Q, REMPEL G L. Liquid backmixing and phase holdup in a gas-liquid multistage agitated contactor[J]. Industrial & Engineering Chemistry Research, 2005, 44(14): 5304-5311 [36] SHI J, GUO K, WANG Z, et al. Computational fluid dynamics simulation of hydrodynamics in a two-stage internal loop airlift reactor with contraction-expansion guide vane[J]. ACS Omega, 2021, 6(10): 6981-6995 [37] 谢承旺. 多目标群体智能优化算法[M]. 北京: 北京理工大学出版社, 2020
|