[1] FARAHANI R D, CHIZARI K, THERRIAULT D. Three-dimensional printing of freeform helical microstructures:A review[J]. Nanoscale, 2014, 6(18):10470-10485 [2] UTELA B, STORTI D, ANDERSON R, et al. A review of process development steps for new material systems in three dimensional printing (3DP)[J]. Journal of Manufacturing Processes, 2008, 10(2):96-104 [3] Tian X, Jin J, Yuan S, et al. Emerging 3D-printed electrochemical energy storage devices:A critical review[J]. Advanced Energy Materials, 2017, doi:0.1002/aenm.201700127 [4] TANG X, ZHOU H, CAI Z, et al. Generalized 3D printing of graphene-based mixed-dimensional hybrid aerogels[J]. ACS Nano, 2018, 12(4):3502-3511 [5] ELDER B, NEUPANE R, TOKITA E, et al. Nanomaterial patterning in 3D printing[J]. Advanced Materials (Deerfield Beach, Fla), 2020, doi:10.1002/adma.201907142 [6] AMBROSI A, SHI R R S, WEBSTER R D. 3D-printing for electrolytic processes and electrochemical flow systems[J]. Journal of Materials Chemistry A, 2020, 8(42):21902-21929 [7] KOROGLU L, AYAS E, AY N. 3D printing of polyvinylidene fluoride based piezoelectric nanocomposites:An overview[J]. Macromolecular Materials and Engineering, 2021, doi:10.1002/mame.202100277 [8] GAO W, PUMERA M. 3D printed nanocarbon frameworks for Li-ion battery cathodes[J]. Advanced Functional Materials, 2021, doi:10.1002/adfm.202007285 [9] ZHANG B, HE J, ZHENG G, et al. Electrohydrodynamic 3D printing of orderly carbon/nickel composite network as supercapacitor electrodes[J]. Journal of Materials Science & Technology, 2021, 82:135-143 [10] WANG Y, XU Z, WU D, et al. Current status and prospects of polymer powder 3D printing technologies[J]. Materials (Basel, Switzerland), 2020, doi:10.3390/ma13102406 [11] LI F, WEI Z, YANG L, et al. Finite element analysis of thermal behavior and experimental investigation of Ti6Al4V in selective laser melting[J]. Optik, doi:10.1016/j.ijleo.2019.163760 [12] YAO B, CHANDRASEKARAN S, ZHANG H, et al. 3D-printed structure boosts the kinetics and intrinsic capacitance of pseudocapacitive graphene aerogels[J]. Advanced Materials (Deerfield Beach, Fla), 2020, doi:10.1002/adma.201906652 [13] ZHAKEYEV A, WANG P, ZHANG L, et al. Additive manufacturing:Unlocking the evolution of energy materials[J]. Advanced Science, 2017, doi:10.1002/advs.201700187 [14] HARDIN J O, OBER T J, VALENTINE A D, et al. Microfluidic printheads for multimaterial 3D printing of viscoelastic inks[J]. Advanced Materials (Deerfield Beach, Fla), 2015, 27(21):3279-3284 [15] ZHANG F, WEI M, VISWANATHAN V V, et al. 3D printing technologies for electrochemical energy storage[J]. Nano Energy, 2017, 40:418-431 [16] ZHAO J, LU H, ZHANG Y, et al. Direct coherent multi-ink printing of fabric supercapacitors[J]. Science Advances, 2021, doi:10.1126/sciadv.abd6978 [17] 查成, 张天宇, 季雨辰, 等. 锂硫电池正极材料的研究进展[J]. 硅酸盐通报, 2021, 40(4):1352-1360 ZHA Cheng, ZHANG Tianyu, JI Yuchen, et al. Research progress of cathode materials for lithium-sulfur battery[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(4):1352-1360(in Chinese) [18] CHEN C, JIANG J, HE W, et al. 3D printed high-loading lithium-sulfur battery toward wearable energy storage[J]. Advanced Functional Materials, 2020, doi:10.1002/adfm.201909469 [19] XUE L, ZENG L, KANG W, et al. 3D printed Li-S batteries with in situ decorated Li2S/C cathode:Interface engineering induced loading-insensitivity for scaled areal performance[J]. Advanced Energy Materials, 2021, doi:10.1002/aenm.202100420 [20] SHEN C, WANG T, XU X, et al. 3D printed cellular cathodes with hierarchical pores and high mass loading for Li-SeS2 battery[J]. Electrochimica Acta, 2020, doi:10.1016/j.electacta.2020.136331 [21] BAO Y, LIU Y, KUANG Y, et al. 3D-printed highly deformable electrodes for flexible lithium ion batteries[J]. Energy Storage Materials, 2020, 33:55-61 [22] YAN J, ZHI G, KONG D, et al. 3D printed rGO/CNT microlattice aerogel for a dendrite-free sodium metal anode[J]. Journal of Materials Chemistry A, 2020, 8(38):19843-19854 [23] ZHANG J, LI X, FAN S, et al. 3D-printed functional electrodes towards Zn-Air batteries[J]. Materials Today Energy, 2020, doi:10.1016/j.mtener.2020.100407 [24] KONG D, WANG Y, HUANG S, et al. 3D printed compressible quasi-solid-state nickel-iron battery[J]. ACS Nano, 2020, 14(8):9675-9686 [25] YUN X, LU B, XIONG Z, et al. Direct 3D printing of a graphene oxide hydrogel for fabrication of a high areal specific capacitance microsupercapacitor[J]. RSC Advances, 2019, 9(50):29384-29395 [26] LING S, KANG W, TAO S, et al. Highly concentrated graphene oxide ink for facile 3D printing of supercapacitors[J]. Nano Materials Science, 2019, 1(2):142-148 [27] YUAN S, FAN W, WANG D, et al. 3D printed carbon aerogel microlattices for customizable supercapacitors with high areal capacitance[J]. Journal of Materials Chemistry A, 2021, 9(1):423-432 [28] KANG W, ZENG L, LING S, et al. 3D printed supercapacitors toward trinity excellence in kinetics, energy density, and flexibility[J]. Advanced Energy Materials, 2021, doi:10.1002/aenm.201901839 [29] SANG X, XIE Y, LIN M, et al. Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene[J]. ACS Nano, 2016, 10(10):9193-9200 [30] MALESKI K, MOCHALIN V N, GOGOTSI Y. Dispersions of two-dimensional titanium carbide MXene in organic solvents[J]. Chemistry of Materials, 2017, 29(4):1632-1640 [31] WEI C, TAO Y, AN Y, et al. Recent advances of emerging 2D MXene for stable and dendrite-free metal anodes[J]. Advanced Functional Materials, 2020, 30(45):2004613.1-2004613.30 [32] YU L, FAN Z, SHAO Y, et al. Versatile N-doped MXene ink for printed electrochemical energy storage application[J]. Advanced Energy Materials, 2019, doi:10.1002/aenm.201901839 [33] WEI C, TIAN M, WANG M, et al. Universal in situ crafted MOx-MXene heterostructures as heavy and multifunctional hosts for 3D-printed Li-S batteries[J]. ACS Nano, 2020, 14(11):16073-16084 [34] FAN Z, JIN J, LI C, et al. 3D-printed Zn-ion hybrid capacitor enabled by universal divalent cation-gelated additive-free Ti3C2 MXene ink[J]. ACS Nano, 2021, 15(2):3098-3107 [35] 北京有机化工厂研究所编译. 聚乙烯醇的性质和应用[M]. 北京:纺织工业出版社, 1979 [36] IDREES M, AHMED S, MOHAMMED Z, et al. 3D printed supercapacitor using porous carbon derived from packaging waste[J]. Additive Manufacturing, 2020, doi:10.1016/j.addma.2020.101525 [37] 孙宏磊, 张学佳, 王建, 等. 聚丙烯酰胺特性及生产技术探讨[J]. 化工中间体, 2011, 7(2):23-27 SUN Honglei, ZHANG Xuejia, WANG Jian, et al. Progress on characteristics and production technology of polyacrylamide[J]. Chemical Intermediates, 2011, 7(2):23-27(in Chinese) [38] ZONG W, CHUI N, TIAN Z, et al. Ultrafine MoP nanoparticle splotched nitrogen-doped carbon nanosheets enabling high-performance 3D-printed potassium-ion hybrid capacitors[J]. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2021, doi:10.1002/advs.202004142 [39] SHEN K, CAO Z, SHI Y, et al. 3D printing lithium salt towards dendrite-free lithium anodes[J]. Energy Storage Materials, 2021, 35:108-113 [40] TIAN X, WANG T, MA H, et al. A universal strategy towards 3D printable nanomaterial inks for superior cellular high-loading battery electrodes[J]. Journal of Materials Chemistry A, 2021, 9(29):16086-16092 [41] LI L, TAN H, YUAN X, et al. Direct ink writing preparation of LiFePO4/MWCNTs electrodes with high-areal Li-ion capacity[J]. Ceramics International, 2021, 47(15):21161-21166 [42] ZHAO X, LIU B, PAN P, et al. Fabrication of reduced graphene oxide/Manganese oxide ink for 3D-printing technology on the application of high-performance supercapacitors[J]. Journal of Materials Science, 2021, 56(13):8102-8114 [43] YAO B, PENG H, ZHANG H, et al. Printing porous carbon aerogels for low temperature supercapacitors[J]. Nano Letters, 2021, 21(9):3731-3737 [44] KANG W, ZENG L, LING S, et al. Self-healable inks permitting 3D printing of diverse systems towards advanced bicontinuous supercapacitors[J]. Energy Storage Materials, 2021, 35:345-352 [45] MA H, TIAN X, WANG T, et al. Tailoring pore structures of 3D printed cellular high-loading cathodes for advanced rechargeable zinc-ion batteries[J]. Small (Weinheim an Der Bergstrasse, Germany), 2021, 17(29):e2100746 [46] LU H, PENG Q, WANG Z, et al. 3D printing coaxial fiber electrodes towards boosting ultralong cycle life of fibrous supercapacitors[J]. Electrochimica Acta, 2021, 380:138220 [47] KRISHNADOSS V, KANJILAL B, HESKETH A, et al. In situ 3D printing of implantable energy storage devices[J]. Chemical Engineering Journal, 2021, 409:128213 [48] KANG W, ZENG L, LING S, et al. Three-dimensional printed mechanically compliant supercapacitor with exceptional areal capacitance from a self-healable ink[J]. Advanced Functional Materials, 2021, 31(32):2102184
|