[1] DU J, ZHANG X, FENG X, et al. Desalination of high salinity brackish water by an NF-RO hybrid system[J]. Desalination, 2020, doi:10.1016/j.desal.2020.114445 [2] WANG L, PATEL S K, ELIMELECH M. Correlation equation for evaluating energy consumption and process performance of brackish water desalination by electrodialysis[J]. Desalination, 2021, 510:115089-115098 [3] PATEL S K, QIN M, WALKER W S, et al. Energy efficiency of electro-driven brackish water desalination:Electrodialysis significantly outperforms membrane capacitive deionization[J]. Environmental Science & Technology, 2020, 54(6):3663-3677 [4] JONES E, QADIR M, VAN VLIET M T H, et al. The state of desalination and brine production:A global outlook[J]. Science of the Total Environment, 2019, 657:1343-1356 [5] 潘海如, 陈广洲, 高雅伦, 等. 电渗析技术在高含盐废水处理中的研究进展[J]. 应用化工, 2021, 50(10):2886-2891 PAN Hairu, CHEN Guangzhou, GAO Yalun, et al. Progress of electrodialysis technology in high salinity wastewater treatment[J]. Applied Chemical Industry, 2021, 50(10):2886-2891(in Chinese) [6] AVCI A H, RIJNAARTS T, FONTANANOVA E, et al. Sulfonated polyethersulfone based cation exchange membranes for reverse electrodialysis under high salinity gradients[J]. Journal of Membrane Science, 2020, doi:10.1016/j.memsci.2019.117585 [7] TUFA R A, PIALLAT T, HNÁT J, et al. Salinity gradient power reverse electrodialysis:Cation exchange membrane design based on polypyrrole-chitosan composites for enhanced monovalent selectivity[J]. Chemical Engineering Journal, 2020, doi:10.1016/j.cej.2019.122461 [8] KANG S, LI J, WANG Z, et al. Salinity gradient energy capture for power production by reverse electrodialysis experiment in thermal desalination plants[J]. Journal of Power Sources, 2022, doi:10.1016/j.jpowsour.2021.230806 [9] PANG X, TAO Y, XU Y, et al. Enhanced monovalent selectivity of cation exchange membranes via adjustable charge density on functional layers[J]. Journal of Membrane Science, 2020, doi:10.1016/j.memsci.2019.117544 [10] ROGHMANS F, EVDOCHENKO E, MARTÍ-CALATAYUD M C, et al. On the permselectivity of cation-exchange membranes bearing an ion selective coating[J]. Journal of Membrane Science, 2020, doi:10.1016/j.memsci.2020.117854 [11] CHEN G, WEI K, HASSANVAND A, et al. Single and binary ion sorption equilibria of monovalent and divalent ions in commercial ion exchange membranes[J]. Water Research, 2020, doi:10.1016/j.watres.2020.115681 [12] ZHAO Y, ZHANG D, ZHAO L, et al. Excellent ion selectivity of Nafion membrane modified by PBI via acid-base pair effect for vanadium flow battery[J]. Electrochimica Acta, 2021, doi:10.1016/j.electacta.2021.139144 [13] ZHAO J, REN L, CHEN Q, et al. Fabrication of cation exchange membrane with excellent stabilities for electrodialysis:A study of effective sulfonation degree in ion transport mechanism[J]. Journal of Membrane Science, 2020, doi:10.1016/j.memsci.2020.118539 [14] GOEL P, MANDAL P, BHUVANESH E, et al. Temperature resistant cross-linked brominated poly phenylene oxide-functionalized graphene oxide nanocomposite anion exchange membrane for desalination[J]. Separation and Purification Technology, 2021, doi:10.1016/j.seppur.2020.117730 [15] KRISTENSEN M B, HALDRUP S, CHRISTENSEN J R, et al. Sulfonated poly(arylene thioether sulfone) cation exchange membranes with improved permselectivity/ion conductivity trade-off[J]. Journal of Membrane Science, 2016, 520:731-739 [16] DURMAZ E N, SAHIN S, VIRGA E, et al. Polyelectrolytes as building blocks for next-generation membranes with advanced functionalities[J]. ACS Applied Polymer Materials, 2021, 3(9):4347-4374 [17] DEBOLI F, VAN DER BRUGGEN B, DONTEN M L. A novel concept of hierarchical cation exchange membrane fabricated from commodity precursors through an easily scalable process[J]. Journal of Membrane Science, 2021, doi:10.1016/j.memsci.2021.119594
|