[1] JI M, CHEN L, QUE J, et al. Effects of transition metal oxides on pyrolysis properties of PVC[J]. Process Safety and Environmental Protection, 2020, 140: 211-220
[2] ZHANG J, LIU N, LI W, et al. Progress on cleaner production of vinyl chloride monomers over non-mercury catalysts[J]. Frontiers of Chemical Science and Engineering, 2011, 5(4): 514-520
[3] LI J, FAN J, ALI S, et al. The origin of the extraordinary stability of mercury catalysts on the carbon support: The synergy effects between oxygen groups and defects revealed from a combined experimental and DFT study[J]. Chinese Journal of Catalysis, 2019, 40(2): 141-146
[4] 刘超. 活性炭基废汞触媒微波强化脱汞及资源化利用研究[D]. 昆明: 昆明理工大学, 2018 LIU Chao. Study on microwave enhanced mercury removal and resource utilization of activated carbon-based waste mercury catalyst[D].Kunming: Kunming University of Science and Technology, 2018 (in Chinese)
[5] 陈静, 侯春阳, 金炜阳, 等. 乙炔法生产氯乙烯工业反应技术研究进展[J]. 化工进展, 2010, 29(9): 1603-1608 CHEN Jing, HOU Chunyang, JIN Weiyang, et al. Technology progress in industrial hydrochlorination of acetylene to vinyl chloride[J]. Chemical Industry and Engineering Progress, 2010, 29(9): 1603-1608(in Chinese)
[6] 廖先传, 秦克林, 廖书辉. 一种环保型低汞触媒的高效干燥装置: CN210740960U[P]. 2020-06-12 LIAO Xianchuan, QIN Kelin, LIAO Shugui. Environment-friendly efficient drying device for low-mercury catalyst: CN210740960U[P]. 2020-06-12 (in Chinese)
[7] 周凡. 褐煤微波干燥和热解提质的机理研究[D]. 杭州: 浙江大学, 2016 ZHOU Fan. Upgrading lignite through drying and pyrolysis with microwave irradiation[D].Hangzhou: Zhejiang University, 2016 (in Chinese)
[8] 李志刚. 城市污水厂污泥微波干燥效能研究[D]. 重庆: 重庆大学, 2007 LI Zhigang. Study on efficiency of drying sewage sludge by microwave radiation[D].Chongqing: Chongqing University, 2007 (in Chinese)
[9] RATTANADECHO P, MAKUL N. Microwave-assisted drying: A review of the state-of-the-art[J]. Drying Technology, 2016, 34(1): 1-38
[10] 赵希鹏. 大孔容高比表面积硅胶的制备[D]. 山东青岛: 青岛科技大学, 2012 ZHAO Xipeng. The preparation of silica gel with big pore volume and high surface area[D].Shandong Qingdao: Qingdao University of Science & Technology, 2012 (in Chinese)
[11] KUMAR C, KARIM M A. Microwave-convective drying of food materials: A critical review[J]. Critical Reviews in Food Science and Nutrition, 2019, 59(3): 379-394
[12] FU B, CHEN M. Microwave drying performance of spent coffee grounds briquette coupled with mineral additives[J]. Drying Technology, 2020, 38(15): 2094-2101
[13] GUO J, ZHENG L, LI Z. Microwave drying behavior, energy consumption, and mathematical modeling of sewage sludge in a novel pilot-scale microwave drying system[J]. Science of the Total Environment, 2021, 777: 146109
[14] ZHU J, LI X, YANG Z, et al. Drying characteristics of oil shale under microwave heating based on a fully coupled three-dimensional electromagnetic-thermal-multiphase transport model[J]. Fuel, 2022, 308: 121942
[15] 王泽民, 许磊, 白海龙, 等. 工业含水锡粒微波干燥行为研究[J]. 稀有金属, 2021, 45(11): 1335-1342 WANG Zemin, XU Lei, BAI Hailong, et al. Study on microwave drying of industrial water-containing tin particles[J]. Chinese Journal of Rare Metals, 2021, 45(11): 1335-1342(in Chinese)
[16] LV W, XIN Y, ELLIOTT R, et al. Drying kinetics of a philippine nickel laterite ore by microwave heating[J]. Mineral Processing and Extractive Metallurgy Review, 2021, 42(1): 46-52
[17] ATHAYDE M, COTA M, COVCEVICH M. Iron ore pellet drying assisted by microwave: A kinetic evaluation[J]. Mineral Processing and Extractive Metallurgy Review, 2018, 39(4): 266-275
[18] 纪飞, 李臻峰, 李静, 等. 牛蒡微波恒温干燥特性研究[J]. 食品与机械, 2015, 31(6): 56-59 JI Fei, LI Zhenfeng, LI Jing, et al. Research on characteristics of burdock by microwave drying at constant temperature[J]. Food & Machinery, 2015, 31(6): 56-59(in Chinese)
[19] AMBROS S, FOERST P, KULOZIK U. Temperature-controlled microwave-vacuum drying of lactic acid bacteria: Impact of drying conditions on process and product characteristics[J]. Journal of Food Engineering, 2018, 224: 80-87
[20] 马晓彤. 紫苏叶预处理联合微波干燥过程传质规律及气味分析[D]. 江苏无锡: 江南大学, 2021 MA Xiaotong. Mass transfer and odor analysis during pretreatment combined with microwave drying of perilla leaves[D].Jiangsu Wuxi: Jiangnan University, 2021 (in Chinese)
[21] PICKLES C A. Microwave drying of nickeliferous limonitic laterite ores[J]. Canadian Metallurgical Quarterly, 2005, 44(3): 397-408
[22] HUANG Y, ZHANG T, DOU Z, et al. Microwave strengthens decomposition of mixed rare earth concentrate: Microwave absorption characteristics[J]. Journal of Rare Earths, 2019, 37(5): 541-546
[23] SALEMA A A, ANI F N, MOURIS J, et al. Microwave dielectric properties of Malaysian palm oil and agricultural industrial biomass and biochar during pyrolysis process[J]. Fuel Processing Technology, 2017, 166: 164-173
[24] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 氯乙烯合成用低汞触媒: GB/T 31530—2015[S]. 北京: 中国标准出版社, 2015 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Low-level mercury catalyst for chloroethylene synthesis: GB/T 31530—2015[S]. Beijing: Standards Press of China, 2015 (in Chinese)
[25] 李长龙, 彭金辉, 张利波, 等. 硫酸铵微波干燥特性及动力学模型分析[J]. 化学工程, 2011, 39(4): 46-49, 68 LI Changlong, PENG Jinhui, ZHANG Libo, et al. Analysis for microwave drying characteristics and kinetics model of ammonium sulfate[J]. Chemical Engineering (China), 2011, 39(4): 46-49, 68(in Chinese)
[26] LIU C, LIU C, PENG J, et al. Surface chemical characterization of deactivated low-level mercury catalysts for acetylene hydrochlorination[J]. Chinese Journal of Chemical Engineering, 2018, 26(2): 364-372
[27] 于婷. 制备工艺对氯化汞催化剂性能的影响[D]. 北京: 北京服装学院, 2015 YU Ting. Effect of preparation technology in catalytic behavior for HgCl2Catalyst[D].Beijing: Beijing Institute of Clothing Technology, 2015 (in Chinese)
[28] 彭金辉, 杨显万. 微波能技术新应用[M]. 昆明: 云南科技出版社, 1997 PENG Jinhui, YANG Xianwan. The new applications of microwave power[M]. Kunming: Yunnan Science and Technology Press, 1997(in Chinese)
[29] LIU H, XU L, JIN Y, et al. Effect of coal rank on structure and dielectric properties of chars[J]. Fuel, 2015, 153: 249-256
[30] MARLAND S, MERCHANT A, ROWSON N. Dielectric properties of coal[J]. Fuel, 2001, 80(13): 1839-1849
[31] AL-HARAHSHEH M, KINGMAN S, SAEID A, et al. Dielectric properties of Jordanian oil shales[J]. Fuel Processing Technology, 2009, 90(10): 1259-1264
[32] 金钦汉. 微波化学[M]. 北京: 科学出版社, 1999 JIN Qinhan. Microwave chemistry[M]. Beijing: Science Press, 1999 (in Chinese)
[33] KHELFA A, RODRIGUES F A, KOUBAA M, et al. Microwave-assisted pyrolysis of pine wood sawdust mixed with activated carbon for bio-oil and bio-char production[J]. Processes, 2020, 8(11): 1437
[34] PANICKER P K, MAGID A. Microwave plasma gasification for the restoration of urban rivers and lakes, and the elimination of oceanic garbage patches[C]//Proceedings of ASME 2016 10th International Conference on Energy Sustainability Collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology, Charlotte, North Carolina, USA. 2016
[35] LI Z, WANG R, KUDRA T. Uniformity issue in microwave drying[J]. Drying Technology, 2011, 29(6): 652-660
|