[1] 周晶晶, 周军, 吴雷, 等. 生物质供氢体协助低变质煤加氢热解提质的研究进展[J]. 材料导报, 2022, 36(9): 72-79 ZHOU Jingjing, ZHOU Jun, WU Lei, et al. Research progress of hydrogenated pyrolysis of low-rank coal assisted by biomass hydrogen-donor[J]. Materials Reports, 2022, 36(9): 72-79(in Chinese)
[2] HAKEEM I G, HALDER P, MARZBALI M H, et al. Research progress on levoglucosan production via pyrolysis of lignocellulosic biomass and its effective recovery from bio-oil[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105614
[3] 梅艳阳, 张世鹏, 邵水军, 等. 温度对玉米秆烘焙及热解的影响[J]. 太阳能学报, 2022, 43(9): 363-368 MEI Yanyang, ZHANG Shipeng, SHAO Shuijun, et al. Effect of temperature conditions on cornstalks torrefaction and pyrolysis[J]. Acta Energiae Solaris Sinica, 2022, 43(9): 363-368(in Chinese)
[4] CHEN X, CHE Q, LI S, et al. Recent developments in lignocellulosic biomass catalytic fast pyrolysis: Strategies for the optimization of bio-oil quality and yield[J]. Fuel Processing Technology, 2019, 196: 106180
[5] 陕西省统计局. 2022年陕西省果业发展统计概览[EB/OL].http://www.shaanxi.gov.cn/sj/zxfb/202304/t20230406_2281339_wap.html. 2023-04-06
[6] LI C, ZHANG H, WANG Q, et al. Influencing factors of cutting force for apple tree branch pruning[J]. Agriculture, 2022, 12(2): 312
[7] 王俊丽, 赵强, 郝晓刚, 等. 低阶煤与生物质混合低温共热解特性分析及对产物组成的影响[J]. 燃料化学学报, 2021, 49(1): 37-46 WANG Junli, ZHAO Qiang, HAO Xiaogang, et al. Low temperature co-pyrolysis of low rank coal with biomass and its influence on pyrolysis-derived products[J]. Journal of Fuel Chemistry and Technology, 2021, 49(1): 37-46(in Chinese)
[8] XIONG S, ZHANG S, WU Q, et al. Investigation on cotton stalk and bamboo sawdust carbonization for barbecue charcoal preparation[J]. Bioresource Technology, 2014, 152: 86-92
[9] KLUSKA J, OCHNIO M, KARDAS' D. Carbonization of corncobs for the preparation of barbecue charcoal and combustion characteristics of corncob char[J]. Waste Management, 2020, 105: 560-565
[10] 王才威, 张守玉, 姚云隆, 等. 生物质成型炭燃烧特性研究[J]. 太阳能学报, 2019, 40(7): 2014-2020 WANG Caiwei, ZHANG Shouyu, YAO Yunlong, et al. Study on combustion characteristics of carbonized biomass briquettes[J]. Acta Energiae Solaris Sinica, 2019, 40(7): 2014-2020(in Chinese)
[11] LIU Z, FEI B, JIANG Z, et al. Combustion characteristics of bamboo-biochars[J]. Bioresource Technology, 2014, 167: 94-99
[12] 汪来松, 宋云彩, 冯杰, 等. 生物质中碱/碱土金属在共气化过程中的作用机制研究进展[J]. 煤炭学报, 2021, 46(S1): 495-502 WANG Laisong, SONG Yuncai, FENG Jie, et al. Research progress on the mechanism of alkali/alkaline earth metals in biomass during co-gasification[J]. Journal of China Coal Society, 2021, 46(S1): 495-502(in Chinese)
[13] 李薇, 黄奎, 董艳艳, 等. 热重-红外联用技术分析桉树热解动力学及挥发产物对结渣影响研究[J]. 太阳能学报, 2016, 37(12): 3233-3239 LI Wei, HUANG Kui, DONG Yanyan, et al. Influence study of pyrolysis kinetics and volatile product characteristics of eucalyptus on slagging based on TG-DTG-FTIR technique[J]. Acta Energiae Solaris Sinica, 2016, 37(12): 3233-3239(in Chinese)
[14] VICENTE E D, VICENTE A, EVTYUGINA M, et al. Particulate and gaseous emissions from charcoal combustion in barbecue grills[J]. Fuel Processing Technology, 2018, 176: 296-306
[15] 张会岩, 杨海平, 陆强, 等. 生物质定向热解制取高品质液体燃料、化学品和碳材料研究进展[J]. 工程热物理学报, 2021, 42(12): 3031-3044 ZHANG Huiyan, YANG Haiping, LU Qiang, et al. Progress of directional pyrolysis of biomass to produce high-quality liquid fuels, chemicals and carbon materials[J]. Journal of Engineering Thermophysics, 2021, 42(12): 3031-3044(in Chinese)
[16] TORRI I D, PAASIKALLIO V, FACCINI C S, et al. Bio-oil production of softwood and hardwood forest industry residues through fast and intermediate pyrolysis and its chromatographic characterization[J]. Bioresource Technology, 2016, 200: 680-690
[17] REN X, DU H, WANG W, et al. Analysis of pyrolysis process and gas evolution rule of larch wood by TG-FTIR[J]. Guang Pu, 2012, 32(4): 944-948
[18] DUFOURNY A, VAN DE STEENE L, HUMBERT G, et al. Influence of pyrolysis conditions and the nature of the wood on the quality of charcoal as a reducing agent[J]. Journal of Analytical and Applied Pyrolysis, 2019, 137: 1-13
[19] 张海荣, 庞浩, 石锦志, 等. 生物质化学组分及其液化残渣的热重行为[J]. 化工进展, 2011, 30(10): 2194-2199 ZHANG Hairong, PANG Hao, SHI Jinzhi, et al. TG study on major biomass components and its liquefied residues from pyrolysis[J]. Chemical Industry and Engineering Progress, 2011, 30(10): 2194-2199(in Chinese)
[20] CHEN H, LIU Z, CHEN X, et al. Comparative pyrolysis behaviors of stalk, wood and shell biomass: Correlation of cellulose crystallinity and reaction kinetics[J]. Bioresource Technology, 2020, 310: 123498
[21] WERNER K, POMMER L, BROSTRÖM M. Thermal decomposition of hemicelluloses[J]. Journal of Analytical and Applied Pyrolysis, 2014, 110: 130-137
[22] WEBER K, QUICKER P. Properties of biochar[J]. Fuel, 2018, 217: 240-261
[23] WANG S, GUO X, LIANG T, et al. Mechanism research on cellulose pyrolysis by Py-GC/MS and subsequent density functional theory studies[J]. Bioresource Technology, 2012, 104: 722-728
[24] SHEN D K, GU S, BRIDGWATER A V. Study on the pyrolytic behaviour of xylan-based hemicellulose using TG-FTIR and Py-GC-FTIR[J]. Journal of Analytical and Applied Pyrolysis, 2010, 87(2): 199-206
[25] CAO J, XIAO G, XU X, et al. Study on carbonization of lignin by TG-FTIR and high-temperature carbonization reactor[J]. Fuel Processing Technology, 2013, 106: 41-47
[26] YANG H, LI S, LIU B, et al. Hemicellulose pyrolysis mechanism based on functional group evolutions by two-dimensional perturbation correlation infrared spectroscopy[J]. Fuel, 2020, 267: 117302
[27] LIU C, DENG Y, WU S, et al. Study on the pyrolysis mechanism of three guaiacyl-type lignin monomeric model compounds[J]. Journal of Analytical and Applied Pyrolysis, 2016, 118: 123-129
[28] XU D, CAO J, LI Y, et al. Effect of pyrolysis temperature on characteristics of biochars derived from different feedstocks: A case study on ammonium adsorption capacity[J]. Waste Management, 2019, 87: 652-660
[29] WANG X, ZHAI M, WANG Z, et al. Carbonization and combustion characteristics of palm fiber[J]. Fuel, 2018, 227: 21-26
[30] SONG Y, YIN N, YAO D, et al. Co-pyrolysis characteristics and synergistic mechanism of low-rank coal and direct liquefaction residue[J]. Energy Sources Part A: Recovery Utilization and Environmental Effects, 2019, 1-15
[31] W?DRZYK M, JANUS R, LEWANDOWSKI M, et al. On mechanism of lignin decomposition-Investigation using microscale techniques: Py-GC-MS, Py-FT-IR and TGA[J]. Renewable Energy, 2021, 177: 942-952
[32] AL-WABEL M I, AL-OMRAN A, EL-NAGGAR A H, et al. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes[J]. Bioresource Technology, 2013, 131: 374-379
[33] HUANG H, LIU J, LIU H, et al. Pyrolysis of water hyacinth biomass parts: Bioenergy, gas emissions, and by-products using TG-FTIR and Py-GC/MS analyses[J]. Energy Conversion and Management, 2020, 207: 112552
[34] 石海波, 孙姣, 陈文义, 等. 生物质热解炭化反应设备研究进展[J]. 化工进展, 2012, 31(10): 2130-2136, 2166 SHI Haibo, SUN Jiao, CHEN Wenyi, et al. Progress in the study of biomass pyrolysis carbonization reactive equipments[J]. Chemical Industry and Engineering Progress, 2012, 31(10): 2130-2136, 2166(in Chinese)
[35] SHEN D, GU S. The mechanism for thermal decomposition of cellulose and its main products[J]. Bioresource Technology, 2009, 100(24): 6496-6504
[36] 王才威, 张守玉, 杨东杰, 等. 木醋液制备及形成机理研究进展[J]. 化工进展, 2020, 39(9): 3723-3738 WANG Caiwei, ZHANG Shouyu, YANG Dongjie, et al. Research advance in preparation and formation mechanism of wood vinegar[J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3723-3738(in Chinese)
[37] YU C, ZHANG N, TENG H. Investigation of different structures of coals through FTIR and Raman techniques[J]. Spectroscopy and spectral analysis, 2021, 41(7): 2050-2056
[38] ZHANG C, CHAO L, ZHANG Z, et al. Pyrolysis of cellulose: Evolution of functionalities and structure of bio-char versus temperature[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110416
|