[1] 李德展, 宋文波, 毕福勇, 等. 茂金属催化剂淤浆聚合制备高密度聚乙烯[J]. 石油化工, 2016, 45(3): 340-345 LI Dezhan, SONG Wenbo, BI Fuyong, et al. Preparation of high density polyethylene by slurry polymerization with metallocene catalyst[J]. Petrochemical Technology, 2016, 45(3): 340-345(in Chinese)
[2] 马丽军, 张志传. Unipol茂金属聚乙烯管材料的工业化开发与应用[J]. 云南化工, 2021, 48 (8): 326-331 MA Lijun, ZHANG Zhichuan. Industrial development and application of unipol metallocene polyethylene pipe materials [J]. Yunnan Chemical Industry, 2021, 48 (8): 326-331
[3] WILLIAMS T J, SMITH A D H, BUFFET J C, et al. Group 4 constrained geometry complexes for olefin (co)polymerisation[J]. Molecular Catalysis, 2020, 486: 110872
[4] 黄启谷. 茂金属/硼化物催化体系用于烯烃聚合的研究进展[J]. 合成树脂及塑料, 1998, 15(4): 50-53 HUANG Qigu. Research progress on metallocene/boride catalytic systems for olefin polymerization [J]. Synthetic resins and plastics, 1998, 15 (4): 50-53
[5] 唐毅平, 王临才, 秦一秀, 等. 无机载体负载茂金属催化剂研究进展[J]. 工业催化, 2011, 19(1): 7-10 TANG Yiping, WANG Lincai, QIN Yixiu, et al. Research progress in metallocene catalysts supported on inorganic carriers[J]. Industrial Catalysis, 2011, 19(1): 7-10(in Chinese)
[6] CAMPOS J M, LOURENÇO J P, CRAMAIL H, et al. Nanostructured silica materials in olefin polymerisation: From catalytic behaviour to polymer characteristics[J]. Progress in Polymer Science, 2012, 37(12): 1764-1804
[7] KILPATRICK A F R, BUFFET J C, NØRBY P, et al. Synthesis and characterization of solid polymethylaluminoxane: A bifunctional activator and support for slurry-phase ethylene polymerization[J]. Chemistry of Materials, 2016, 28(20): 7444-7450
[8] ARNOLD T A Q, TURNER Z R, BUFFET J C, et al. Polymethylaluminoxane supported zirconocene catalysts for polymerisation of ethylene[J]. Journal of Organometallic Chemistry, 2016, 822: 85-90
[9] VALENCIA L, ENRÍQUEZ-MEDRANO F, LÓPEZ-GONZÁLEZ R, et al. Ethylene polymerization via zirconocene catalysts and organoboron activators: An experimental and kinetic modeling study[J]. Processes, 2021, 9(1): 162
[10] WANGLEE Y J, HU J, WHITE R E, et al. Borane-induced dehydration of silica and the ensuing water-catalyzed grafting of B(C6F5)3 to give a supported, single-site Lewis acid, ≡SiOB(C6F5)2[J]. Journal of the American Chemical Society, 2012, 134(1): 355-366
[11] KILPATRICK A F R, REES N H, TURNER Z R, et al. Physicochemical surface-structure studies of highly active zirconocene polymerisation catalysts on solid polymethylaluminoxane activating supports[J]. Materials Chemistry Frontiers, 2020, 4(11): 3226-3233
[12] KILPATRICK A F R, REES N H, SRIPOTHONGNAK S, et al. Slurry-phase ethylene polymerization using pentafluorophenyl- and pentafluorophenoxy-modified solid polymethylaluminoxanes[J]. Organometallics, 2018, 37(1): 156-164
[13] BUFFET J C, BYLES C F H, FELTON R, et al. Metallocene supported core@LDH catalysts for slurry phase ethylene polymerisation[J]. Chemical Communications, 2016, 52(21): 4076-4079
[14] 张普玉, 柴云, 尹艳琴, 等. 三氟化硼修饰载体负载茂金属催化乙烯聚合[J]. 化学研究, 2003, 14(3): 21-23, 67 ZHANG Puyu, CHAI Yun, YIN Yanqin, et al. Ethylene polymerization catalyzed by metallocene supported on BF3 modified carrier[J]. Chemical Research, 2003, 14(3): 21-23, 67(in Chinese)
[15] TIAN J, WANG S, FENG Y, et al. Borane-functionalized oxide supports: Development of active supported metallocene catalysts at low aluminoxane loading[J]. Journal of Molecular Catalysis, 1999, 144(1): 137-150
[16] NEGUREANU L, HALL R W, BUTLER L G, et al. Methyaluminoxane (MAO) polymerization mechanism and kinetic model from ab initio molecular dynamics and electronic structure calculations[J]. Journal of the American Chemical Society, 2006, 128(51):16816-16826
[17] 张倩, 葛腾杰, 姜涛, 等. 负载型茂金属催化剂用于乙烯淤浆聚合的研究[J]. 化学工业与工程, 2022, 39(6): 29-35 ZHANG Qian, GE Tengjie, JIANG Tao, et al. SMAO supported metallocene catalyst for slurry polymerization of ethylene[J]. Chemical Industry and Engineering, 2022, 39(6): 29-35(in Chinese)
[18] KILPATRICK A F R, REES N H, SRIPOTHONGNAK S, et al. Slurry-phase ethylene polymerization using pentafluorophenyl- and pentafluorophenoxy-modified solid polymethylaluminoxanes[J]. Organometallics, 2018, 37(1): 156-164
|