[1] 杨兴, 孙建友, 李京仙. 聚乙烯生产技术中催化剂研究进展[J]. 广东化工, 2014, 41(17): 107-108 YANG Xing, SUN Jianyou, LI Jingxian. Progress of catalyst research in polyethylene production technology[J]. Guangdong Chemical Industry, 2014, 41(17): 107-108(in Chinese)
[2] 李刚健, 周子淳, 张荣, 等. 聚乙烯催化剂研究现状[J]. 合成材料老化与应用, 2021, 50(2): 151-154 LI Gangjian, ZHOU Zichun, ZHANG Rong, et al. Research status of polyethylene catalyst[J]. Synthetic Materials Aging and Application, 2021, 50(2): 151-154(in Chinese)
[3] 胡程, 张连红, 文婕, 等. 茂金属烯烃聚合催化剂研究进展[J]. 广州化工, 2022, 50(13): 16-19 HU Cheng, ZHANG Lianhong, WEN Jie, et al. Research progress on metallocene olefin polymerization catalysts[J]. Guangzhou Chemical Industry, 2022, 50(13): 16-19(in Chinese)
[4] VELTHOEN M E Z, MUÑOZ-MURILLO A, BOUHMADI A, et al. The multifaceted role of methylaluminoxane in metallocene-based olefin polymerization catalysis[J]. Macromolecules, 2018, 51(2): 343-355
[5] 高宇新, 杨国兴, 吴薇, 等. 负载化茂金属催化剂的研究进展[J]. 现代塑料加工应用, 2022, 34(1): 56-59 GAO Yuxin, YANG Guoxing, WU Wei, et al. Research progress of supported metallocene catalysts[J]. Modern Plastics Processing and Applications, 2022, 34(1): 56-59(in Chinese)
[6] TRAN D, SOWAH C S, CHOI K. Effects of spatial distributions of active sites in a silica-supported metallocene catalyst on particle fragmentation and reaction in gas-phase ethylene polymerization[J]. Macromolecules, 2022, 55(7): 2444-2455
[7] BOLNER F M, BLAZZIO Y R, LARA B R, et al. Impact of silica pore structure on the performance of metallocene catalysts in ethylene gas-phase polymerization[J]. The Canadian Journal of Chemical Engineering, 2023, 101(9): 4819-4831
[8] 张倩, 葛腾杰, 姜涛, 等. 负载型茂金属催化剂用于乙烯淤浆聚合的研究[J]. 化学工业与工程, 2022, 39(6): 29-35 ZHANG Qian, GE Tengjie, JIANG Tao, et al. SMAO supported metallocene catalyst for slurry polymerization of ethylene[J]. Chemical Industry and Engineering, 2022, 39(6): 29-35(in Chinese)
[9] 高克京, 吕新平, 王世波, 等. 高效气相聚乙烯催化剂的制备[J]. 合成树脂及塑料, 2009, 26(4): 1-5 GAO Kejing, Lü Xinping, WANG Shibo, et al. Preparation of high performance catalyst for polyethylene with gas-phase fluid reactor[J]. China Synthetic Resin and Plastics, 2009, 26(4): 1-5(in Chinese)
[10] 刘彦昌. 分子量分布对聚乙烯性能的影响及控制方法[J]. 合成树脂及塑料, 1999, 16(6): 31-33 LIU Yanchang. Influence of molecular weight distribution on performance of PE product and the control measures[J]. China Synthetic Resin and Plastics, 1999, 16(6): 31-33(in Chinese)
[11] KIDA T, TANAKA R, HIEJIMA Y, et al. Improving the strength of polyethylene solids by simple controlling of the molecular weight distribution[J]. Polymer, 2021, 218: 123526
[12] 王海平. 宽/双峰相对分子质量分布聚乙烯的研究进展[J]. 齐鲁石油化工, 2006, 34(4): 431-435 WANG Haiping. Research progress of polyethylene with wide/bimodal relative molecular weight distribution[J]. Qilu Petrochemical Technology, 2006, 34(4): 431-435(in Chinese)
[13] 崔楠楠, 王洪涛, 周俊领. 复合催化剂制备宽/双峰相对分子质量分布聚乙烯[J]. 石油化工, 2017, 46(6): 691-694 CUI Nannan, WANG Hongtao, ZHOU Junling. Mixed catalyst for producing broad/bimodal relative molecular mass polyethylene[J]. Petrochemical Technology, 2017, 46(6): 691-694(in Chinese)
[14] 张林, 许学翔, 纪洪波, 等. Ziegler-Natta/非茂双金属催化剂制备宽相对分子质量分布聚乙烯[J]. 石油化工, 2005, 34(11): 1050-1054 ZHANG Lin, XU Xuexiang, JI Hongbo, et al. Ziegler-natta/non-metallocene bimetallic catalyst for preparation of broad relative molecular mass distribution polyethylene[J]. Petrochemical Technology, 2005, 34(11): 1050-1054(in Chinese)
[15] LIU Z, ZHANG X, HUANG H, et al. Synthesis of (co-) polyethylene with broad molecular weight distribution by the heterogenous Ziegler-Natta catalysts via one-pot strategy[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(6): 2217-2224
[16] MEHDIABADI S, LHOST O, VANTOMME A, et al. Ethylene polymerization kinetics and microstructure of polyethylenes made with supported metallocene catalysts[J]. Industrial & Engineering Chemistry Research, 2021, 60(27): 9739-9754
[17] 任合刚, 高晶杰, 任合平, 等. 有机载体钛系催化剂在乙烯聚合中的应用[J]. 合成树脂及塑料, 2022, 39(5): 38-40 REN Hegang, GAO Jingjie, REN Heping, et al. Application of organic supported titanium catalyst system in ethylene polymerization[J]. China Synthetic Resin and Plastics, 2022, 39(5): 38-40(in Chinese)
[18] WANG W, FAN Z, FENG L, et al. Substituent effect of bisindenyl zirconene catalyst on ethylene/1-hexene copolymerization and propylene polymerization[J]. European Polymer Journal, 2005, 41(1): 83-89
[19] 米普科, 王建伟, 王立娟, 等. 碳桥限制构型催化剂催化乙烯1-己烯共聚和共聚物结构表征[J]. 分子催化, 2017, 31(6): 501-512 MI Puke, WANG Jianwei, WANG Lijuan, et al. Synthesis and characterization of copolymer of ethylene and 1-hexene by carbon bridge CpCN-CGC[J]. Journal of Molecular Catalysis (China), 2017, 31(6): 501-512(in Chinese)
[20] 张玉良, 陈志康, 蒋文军, 等. 聚合条件对乙烯-1-辛烯共聚反应及性能影响[J]. 现代塑料加工应用, 2019, 31(5): 21-23 ZHANG Yuliang, CHEN Zhikang, JIANG Wenjun, et al. Effects of polymerization conditions on copolymerization and properties of ethylene-1-octene[J]. Modern Plastics Processing and Applications, 2019, 31(5): 21-23(in Chinese)
|