[1] MOHSIN M, ABBAS Q, ZHANG J, et al. Integrated effect of energy consumption, economic development, and population growth on CO2 based environmental degradation: A case of transport sector[J]. Environmental Science and Pollution Research, 2019, 26(32): 32824-32835
[2] 彭立山, 魏子栋. 高性能电解水电极催化材料的设计及产品工程[J]. 化学进展, 2018, 30(1): 14-28 PENG Lishan, WEI Zidong. Design and product engineering of high-performance electrode catalytic materials for water electrolysis[J]. Progress in Chemistry, 2018, 30(1): 14-28(in Chinese)
[3] 张少阳, 商阳阳, 赵瑞花,等. 电催化还原二氧化碳制一氧化碳催化剂研究进展[J]. 化工进展, 2022, 41(4): 1848-1857 ZHANG Shaoyang, SHANG Yangyang, ZHAO Ruihua, et al. Research progress on catalysts for electrocatalytic reduction of carbon dioxide to carbon monoxide[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1848-1857
[4] GONG L, ZHANG D, LIN C, et al. Catalytic mechanisms and design principles for single-atom catalysts in highly efficient CO2 conversion[J]. Advanced Energy Materials, 2019, 9(44): 1902625
[5] WOLDU A R. From low to high-index facets of noble metal nanocrystals: A way forward to enhance the performance of electrochemical CO2 reduction[J]. Nanoscale, 2020, 12(16): 8626-8635
[6] HATSUKADE T, KUHL K P, CAVE E R, et al. Insights into the electrocatalytic reduction of CO2 on metallic silver surfaces[J]. Physical Chemistry Chemical Physics: PCCP, 2014, 16(27): 13814-13819
[7] ZHANG C, FU Z, ZHAO Q, et al. Single-atom-Ni-decorated, nitrogen-doped carbon layers for efficient electrocatalytic CO2 reduction reaction[J]. Electrochemistry Communications, 2020, 116: 106758
[8] 梁凤霞. 多相化分子催化剂的制备及其二氧化碳电催化性能研究[D]. 长沙: 湖南大学, 2021 LIANG Fengxia. Preparation of heterogeneous molecular catalysts and their electrocatalytic properties for carbon dioxide[D].Changsha: Hunan University, 2021(in Chinese)
[9] YANG Z, CHEN J, QIU L, et al. Molecular engineering of metal complexes for electrocatalytic carbon dioxide reduction: From adjustment of intrinsic activity to molecular immobilization[J]. Angewandte Chemie (International Ed in English), 2022, 61(44): e202205301
[10] JIANG Z, ZHANG Z, LI H, et al. Molecular catalyst with near 100% selectivity for CO2 reduction in acidic electrolytes[J]. Advanced Energy Materials, 2023, 13(6): 2203603
[11] BAO W, HUANG S, TRANCA D, et al. Molecular engineering of CoII porphyrins with asymmetric architecture for improved electrochemical CO2 reduction[J]. ChemSusChem, 2022, 15(8): e202200090
[12] WANG X, FU Y, TRANCA D, et al. Regulating the spin state of nickel in molecular catalysts for boosting carbon dioxide reduction[J]. ACS Applied Energy Materials, 2021, 4(3): 2891-2898
[13] CHEN K, CAO M, LIN Y, et al. Ligand engineering in nickel phthalocyanine to boost the electrocatalytic reduction of CO2[J]. Advanced Functional Materials, 2022, 32(10): 2111322
[14] CHOI J, WAGNER P, GAMBHIR S, et al. Steric modification of a cobalt phthalocyanine/graphene catalyst to give enhanced and stable electrochemical CO2 reduction to CO[J]. ACS Energy Letters, 2019, 4(3): 666-672
[15] LI R, ZHANG X, ZHU P, et al. Electron-donating or-withdrawing nature of substituents revealed by the electrochemistry of metal-free phthalocyanines[J]. Inorganic Chemistry, 2006, 45(5): 2327-2334
[16] MORI S, SHIBATA N. Synthesis and application of trifluoroethoxy-substituted phthalocyanines and subphthalocyanines[J]. Beilstein Journal of Organic Chemistry, 2017, 13: 2273-2296
[17] GUO X, LI C, WANG W, et al. Electronic effects on polypyridyl Co complex-based water reduction catalysts[J]. RSC Advances, 2021, 11(39): 24359-24365
[18] HAMAMOTO Y, HIRAO Y, KUBO T. Biradicaloid behavior of a twisted double bond[J]. The Journal of Physical Chemistry Letters, 2021, 12(19): 4729-4734
[19] ZHANG L, FENG J, LIU S, et al. Atomically dispersed Ni-Cu catalysts for pH-universal CO2 electroreduction[J]. Advanced Materials, 2023, 35(13): e2209590
[20] SILLA J M, DUARTE C J, FREITAS M P, et al. Theoretical and infrared studies on the conformational isomerism of trans-2-bromo-alkoxycyclohexanes[J]. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 2011, 81(1): 359-362
[21] SALIH A?IRTA? M. Highly soluble phthalocyanines with hexadeca tert-butyl substituents[J]. Dyes and Pigments, 2008, 79(3): 247-251
[22] KAN J, CHEN Y, GAO J, et al. Synthesis, self-assembly, and semiconducting properties of phenanthroline-fused phthalocyanine derivatives[J]. Journal of Materials Chemistry, 2012, 22(31): 15695-15701
[23] 杜俊儒. 不同取代基金属酞菁的合成表征及光谱性质研究[D]. 河北秦皇岛: 燕山大学, 2013 DU Junru. Synthesis, characterization and spectral properties of metal phthalocyanines with different substitutions[D]. Hebei Qinhuangdao: Yanshan University, 2013(in Chinese)
[24] GOTO Y, TANIGUCHI K, OMATA T, et al. Formation of Ni3C nanocrystals by thermolysis of nickel acetylacetonate in oleylamine: Characterization using hard X-ray photoelectron spectroscopy[J]. Chemistry of Materials, 2008, 20(12): 4156-4160
[25] LI N, SI D, WU Q, et al. Boosting electrocatalytic CO2 reduction with conjugated bimetallic Co/Zn polyphthalocyanine frameworks[J]. CCS Chemistry, 2023, 5(5): 1130-1143
[26] MA D, HAN S, CAO C, et al. Remarkable electrocatalytic CO2 reduction with ultrahigh CO/H2 ratio over single-molecularly immobilized pyrrolidinonyl nickel phthalocyanine[J]. Applied Catalysis B: Environmental, 2020, 264: 118530
[27] HASAN M R, HAMID S B A, BASIRUN W J. Charge transfer behavior of graphene-titania photoanode in CO2 photoelectrocatalysis process[J]. Applied Surface Science, 2015, 339: 22-27
[28] HOSSAIN M D, HUANG Y, YU T, et al. Reaction mechanism and kinetics for CO2 reduction on nickel single atom catalysts from quantum mechanics[J]. Nature Communications, 2020, 11: 2256
|