[1] CHI J, YU H. Water electrolysis based on renewable energy for hydrogen production[J]. Chinese Journal of Catalysis, 2018, 39(3):390-394 [2] YU H, YI B. Hydrogen for energy storage and hydrogen production from electrolysis[J]. Chinese Journal of Engineering Science, 2018, doi:10.15302/J-SSCAE-2018.03.009 [3] MANDAL M. Recent advancement on anion exchange membranes for fuel cell and water electrolysis[J]. ChemElectroChem, 2021, 8(1):36-45 [4] LI D, PARK E J, ZHU W, et al. Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers[J]. Nature Energy, 2020, 5(5):378-385 [5] URSUA A, GANDIA L M, SANCHIS P. Hydrogen production from water electrolysis:Current status and future trends[J]. Proceedings of the IEEE, 2012, 100(2):410-426 [6] 万磊, 徐子昂, 王培灿, 等. 电解水制氢的耐碱离子膜研究进展[J]. 化工进展, 2022, 41(3):1556-1568 WAN Lei, XU Ziang, WANG Peican, et al. Progress of alkaline-resistant ion membranes for hydrogen production by water electrolysis[J]. Chemical Industry and Engineering Progress, 2022, 41(3):1556-1568(in Chinese) [7] WENDT H, HOFMANN H. Cermet diaphragms and integrated electrode-diaphragm units for advanced alkaline water electrolysis[J]. International Journal of Hydrogen Energy, 1985, 10(6):375-381 [8] IVANOVA Y A, FREITAS C, LOPES D V, et al. Cellular zirconia ceramics processed by direct emulsification[J]. Journal of the European Ceramic Society, 2020, 40(5):2056-2062 [9] ROSA V M, SANTOS M B F, DA SILVA E P. New materials for water electrolysis diaphragms[J]. International Journal of Hydrogen Energy, 1995, 20(9):697-700 [10] KERRES J, EIGENBERGER G, REICHLE S, et al. Advanced alkaline electrolysis with porous polymeric diaphragms[J]. Desalination, 1996, 104(1/2):47-57 [11] OTERO J, SESE J, MICHAUS I, et al. Sulphonated polyether ether ketone diaphragms used in commercial scale alkaline water electrolysis[J]. Journal of Power Sources, 2014, 247:967-974 [12] AILI D, HANSEN M K, ANDREASEN J W, et al. Porous poly(perfluorosulfonic acid) membranes for alkaline water electrolysis[J]. Journal of Membrane Science, 2015, 493:589-598 [13] VENGATESAN S, SANTHI S, JEEVANANTHAM S, et al. Quaternized poly (styrene-co-vinylbenzyl chloride) anion exchange membranes for alkaline water electrolysers[J]. Journal of Power Sources, 2015, 284:361-368 [14] LIU Z, SAJJAD S D, GAO Y, et al. The effect of membrane on an alkaline water electrolyzer[J]. International Journal of Hydrogen Energy, 2017, 42(50):29661-29665 [15] PARK E J, CAPUANO C B, AYERS K E, et al. Chemically durable polymer electrolytes for solid-state alkaline water electrolysis[J]. Journal of Power Sources, 2018, 375:367-372 [16] HU X, HUANG Y, LIU L, et al. Piperidinium functionalized aryl ether-free polyaromatics as anion exchange membrane for water electrolysers:Performance and durability[J]. Journal of Membrane Science, 2021, doi:10.1016/j.memsci.2020.118964 [17] KRAGLUND M, AILI D, JANKOVA K, et al. Zero-gap alkaline water electrolysis using ion-solvating polymer electrolyte membranes at reduced KOH concentrations[J]. Journal of the Electrochemical Society, 2016, 163(11):F3125-F3131 [18] AILI D, WRIGHT A G, KRAGLUND M R, et al. Towards a stable ion-solvating polymer electrolyte for advanced alkaline water electrolysis[J]. Journal of Materials Chemistry A, 2017, 5(10):5055-5066 [19] HU B, HUANG Y, LIU L, et al. A stable ion-solvating PBI electrolyte enabled by sterically bulky naphthalene for alkaline water electrolysis[J]. Journal of Membrane Science, 2022, doi:10.1016/j.memsci.2021.120042 [20] DE GROOT M T, VREMAN A W. Ohmic resistance in zero gap alkaline electrolysis with a Zirfon diaphragm[J]. Electrochimica Acta, 2021:doi:10.1016/j.electacta.2020.137684 [21] LEE H I, DUNG D T, KIM J, et al. The synthesis of a Zirfon-type porous separator with reduced gas crossover for alkaline electrolyzer[J]. International Journal of Energy Research, 2020, 44(3):1875-1885 [22] STOJADINOVIC J, LA MANTIA F. Woven or nonwoven web:US11035046[P]. 2021-06-15 [23] LEE J W, LEE J H, LEE C, et al. Cellulose nanocrystals-blended zirconia/polysulfone composite separator for alkaline electrolyzer at low electrolyte contents[J]. Chemical Engineering Journal, 2022, doi:10.1016/j.cej.2021.131149 [24] WAN L, XU Z, WANG B. Green preparation of highly alkali-resistant PTFE composite membranes for advanced alkaline water electrolysis[J]. Chemical Engineering Journal, 2021, doi:10.1016/j.cej.2021.131340 [25] MERLE G, HOSSEINY S S, WESSLING M, et al. New cross-linked PVA based polymer electrolyte membranes for alkaline fuel cells[J]. Journal of Membrane Science, 2012, 409/410:191-199 [26] LIN Z, LU Y, LAI C, et al. Polyvinyl alcohol-based gel electrolytes with high water content for flexible zinc-air batteries with high rate capability[J]. Journal of the Electrochemical Society, 2021, doi:10.1149/1945-7111/ac2ac4 [27] ALIPOORI S, MAZINANI S, ABOUTALEBI S H, et al. Review of PVA-based gel polymer electrolytes in flexible solid-state supercapacitors:Opportunities and challenges[J]. Journal of Energy Storage, 2020, doi:10.1016/j.est.2019.101072 [28] SOHEE K, HEE H J, JINOK Y, et al. Highly selective porous separator with thin skin layer for alkaline water electrolysis[J]. Journal of Power Sources, 2022, doi:10.1016/j.jpowsour.2022.231059 [29] LU S, ZHUANG L, LU J. Homogeneous blend membrane made from poly(ether sulphone) and poly(vinylpyrrolidone) and its application to water electrolysis[J]. Journal of Membrane Science, 2007, 300(1/2):205-210 [30] ZHANG J, GASTEIGER H, GU W. Electrochemical measurement of the oxygen permeation rate through polymer electrolyte membranes[J]. Journal of the Electrochemical Society, 2013, 160(6):F616-F622 [31] 葛升. 静态供水水电解装置研究[D]. 天津:天津大学, 2021 GE Sheng. Study on static water supply electrolysis device[D]. Tianjin:Tianjin University, 2021(in Chinese) [32] 葛升, 闵洛夫, 费洪达, 等. 一步电沉积制备高活性高稳定镍铁合金析氧电催化剂[J]. 化学工业与工程, 2022, 39(2):41-49 GE Sheng, MIN Luofu, FEI Hongda, et al. Highly efficient and durable Ni-Fe alloy catalyst towards OER via one-step electrodeposition[J]. Chemical Industry and Engineering, 2022, 39(2):41-49(in Chinese)
|