[1] National Renewable Energy Laboratory (NREL). Best research-cell efficiency chart, https://www.nrel.gov/pv/cell-efficiency.html
[2] Wang R, Mujahid M, Duan Y, et al. A review of perovskites solar cell stability[J]. Advanced Functional Materials, 2019, doi:10.1002/adfm.201808843
[3] Wali Q, Iftikhar F J, Khan M E, et al. Advances in stability of perovskite solar cells[J]. Organic Electronics, 2020, doi:10.1016/j.orgel.2019.105590
[4] Sarritzu V, Sestu N, Marongiu D, et al. Optical determination of Shockley-Read-Hall and interface recombination currents in hybrid perovskites[J]. Scientific Reports, 2017, doi:10.1038/srep44629
[5] Wang B, Iocozzia J, Zhang M, et al. The charge carrier dynamics, efficiency and stability of two-dimensional material-based perovskite solar cells[J]. Chemical Society Reviews, 2019, 48(18):4854-4891
[6] Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17):6050-6051
[7] Yang W, Park B W, Jung E H, et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells[J]. Science, 2017, 356(6345):1376-1379
[8] Jeon N J, Na H, Jung E H, et al. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells[J]. Nature Energy, 2018, 3(8):682-689
[9] Zhao B, Yan X, Zhang T, et al. Introduction of multifunctional triphenylamino derivatives at the perovskite/HTL interface to promote efficiency and stability of perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2020, 12, 8:9300-9306
[10] Wang D, Wright M, Elumalai N K, et al. Stability of perovskite solar cells[J]. Solar Energy Materials and Solar Cells, 2016, 147:255-275
[11] Liang J, Wang C, Wang Y, et al. All-inorganic perovskite solar cells[J]. Journal of the American Chemical Society, 2016, 138(49):15829-15832
[12] Grancini G, Roldán-Carmona C, Zimmermann I, et al. One-year stable perovskite solar cells by 2D/3D interface engineering[J]. Nature Communications, 2017, doi:10.1038/ncomms15684
[13] Yu J, Badgujar S, Jung E D, et al. Highly efficient and stable inverted perovskite solar cell obtained via treatment by semiconducting chemical additive[J]. Advanced Materials, 2018, doi:10.1002/adma.201805554
[14] Mahapatra A, Prochowicz D, Tavakoli M M, et al. A review of aspects of additive engineering in perovskite solar cells[J]. Journal of Materials Chemistry A, 2020, 8(1):27-54
[15] Cho K T, Paek S, Grancini G, et al. Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole transporting material interface[J]. Energy & Environmental Science, 2017, 10(2):621-627
[16] Shao Y, Xiao Z, Bi C, et al. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells[J]. Nature Communications, doi:2014, 10.1038/ncomms6784
[17] Choi H, Park S, Kang M, et al. Efficient symmetric oligomer hole transporting materials with different cores for high performance perovskite solar cells[J]. Chemical Communications, 2015, 51(85):15506-15509
[18] Zhang H, Wu Y, Zhang W, et al. Low cost and stable quinoxaline-based hole-transporting materials with a D-A-D molecular configuration for efficient perovskite solar cells[J]. Chemical Science, 2018, 9(27):5919-5928
[19] Zhao C, Wang T, Li D, et al. Synthesis and characterization of triphenylamine modified azobenzene dyes[J]. Dyes and Pigments, 2017, 137:256-264
[20] Sun H, Liu D, Wang T, et al. Enhanced internal quantum efficiency in dye-sensitized solar cells:Effect of long-lived charge-separated state of sensitizers[J]. ACS Applied Materials & Interfaces, 2017, 9(11):9880-9891
[21] Fan X, Lai K, Wang L, et al. Efficient photocatalytic dechlorination of chlorophenols over a nonlinear optical material Na3VO2B6O11 under UV-visible light irradiation[J]. Journal of Materials Chemistry A, 2015, 3(23):12179-12187
[22] Gao Y, Wu Y, Lu H, et al. CsPbBr3 perovskite nanoparticles as additive for environmentally stable perovskite solar cells with 20.46% efficiency[J]. Nano Energy, 2019, 59:517-526
[23] Jiang Q, Zhao Y, Zhang X, et al. Surface passivation of perovskite film for efficient solar cells[J]. Nature Photonics, 2019, 13(7):460-466
[24] Shin G S, Zhang Y, Park N G. Stability of precursor solution for perovskite solar cell:Mixture (FAI+PbI2) versus synthetic FAPbI3 crystal[J]. ACS Applied Materials & Interfaces, 2020, 12(13):15167-15174
[25] Kong W, Ding T, Bi G, et al. Optical characterizations of the surface states in hybrid lead-halide perovskites[J]. Physical Chemistry Chemical Physics, 2016, 18(18):12626-12632
[26] Song S, Hong W, Kwon S S, et al. Passivation effects on ZnO nanowire field effect transistors under oxygen, ambient, and vacuum environments[J]. Applied Physics Letters, 2008, doi:10.1063/1.2955512
[27] Lee J W, Bae S H, Hsieh Y T, et al. A bifunctional Lewis base additive for microscopic homogeneity in perovskite solar cells[J]. Chem, 2017, 3(2):290-302
|