[1] 中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2022
[2] RAHMAN A, RASUL M G, KHAN M M K, et al. Recent development on the uses of alternative fuels in cement manufacturing process[J]. Fuel, 2015, 145: 84-99
[3] BENHELAL E, SHAMSAEI E, RASHID M I. Challenges against CO2 abatement strategies in cement industry: A review[J]. Journal of Environmental Sciences, 2021, 104: 84-101
[4] 彭宝利. 新型干法水泥生产工艺及设备[M]. 武汉: 武汉理工大学出版社, 2017 PENG Baoli. New dry process cement production technology and equipment[M]. Wuhan: Wuhan University of Technology Press, 2017(in Chinese)
[5] 沈伟强. NST型窑尾分解炉NOx控制研究[D]. 武汉: 武汉理工大学, 2020 SHEN Weiqiang. Study on NOx control of NST type calciner[D].Wuhan: Wuhan University of Technology, 2020 (in Chinese)
[6] 梅书霞, 谢峻林, 何峰, 等. DD分解炉燃烧与分解耦合过程的数值模拟[J]. 化工学报, 2013, 64(3): 897-905 MEI Shuxia, XIE Junlin, HE Feng, et al. Numerical simulation of coupling mechanism between pulverized coal combustion and calcium carbonate decomposition in double-sprayed precalciner[J]. CIESC Journal, 2013, 64(3): 897-905(in Chinese)
[7] 梅书霞, 谢峻林, 何峰, 等. DD分解炉改变生料进口位置的数值模拟[J]. 武汉理工大学学报, 2012, 34(9): 26-30 MEI Shuxia, XIE Junlin, HE Feng, et al. Numerical simulations in double-sprayed precalciner by changing the location of raw meal inlets[J]. Journal of Wuhan University of Technology, 2012, 34(9): 26-30(in Chinese)
[8] 张三梅. DD分解炉分级燃烧减排NOx的数值模拟及优化研究[D]. 武汉: 武汉理工大学, 2012 ZHANG Sanmei. Numerical simulation of low-NOx staging combustion and optimization research in DD prcealciner[D]. Wuhan: Wuhan University of Technology, 2012 (in Chinese)
[9] 石向前. 不同喷煤位置对KDS型分解炉NOx的形成及生料分解率的影响[D]. 四川绵阳: 西南科技大学, 2020 SHI Xiangqian. The effect of different coal injection locations on NOx formation and raw meal decomposition rate in KDS precalciner[D].Sichuang Mianyang: Southwest University of Science and Technology, 2020 (in Chinese)
[10] YA M, CHEN Z. Simulation on NOx generation of RSP calciner for cement production[J]. Advanced Materials Research, 2012, 535/536/537: 1647-1651
[11] 汤帅. DDF分解炉流场及SNCR法降低NOx的数值模拟研究[D]. 武汉: 武汉理工大学, 2016 TANG Shuai. Numerical simulations of the flow field and SNCR denitrification process on DDF precalciner[D].Wuhan: Wuhan University of Technology, 2016 (in Chinese)
[12] 刘定平, 刘轶豪. 水泥分解炉掺烧污泥NOx排放特性的模拟与优化[J]. 工程热物理学报, 2021, 42(11): 3001-3008 LIU Dingping, LIU Yihao. Simulation and optimization of NOx emission characteristics of co-combustion of coal and sludge in cement precalciner[J]. Journal of Engineering Thermophysics, 2021, 42(11): 3001-3008(in Chinese)
[13] NAKHAEI M, WU H, GRÉVAIN D, et al. CPFD simulation of petcoke and SRF co-firing in a full-scale cement calciner[J]. Fuel Processing Technology, 2019, 196: 106153
[14] MIKUL?I? H, VON BERG E, VUJANOVI? M, et al. Numerical evaluation of different pulverized coal and solid recovered fuel co-firing modes inside a large-scale cement calciner[J]. Applied Energy, 2016, 184: 1292-1305
[15] MEI S, XIE J, CHEN X, et al. Numerical simulation of the complex thermal processes in a vortexing precalciner[J]. Applied Thermal Engineering, 2017, 125: 652-661
[16] 梅书霞, 谢峻林, 陈晓琳, 等. 涡旋式分解炉内煤粉与RDF共燃过程中的交互影响[J]. 硅酸盐通报, 2016, 35(12): 4054-4059, 4081 MEI Shuxia, XIE Junlin, CHEN Xiaolin, et al. Co-combustion interaction of coal and refuse derived fuel in a swirl-type precalciner[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(12): 4054-4059, 4081(in Chinese)
[17] 陈晓琳, 梅书霞, 谢峻林, 等. 两种带涡流室分解炉内气相流场的模拟对比研究[J]. 化学工业与工程, 2014, 31(6): 53-58 CHEN Xiaolin, MEI Shuxia, XIE Junlin, et al. Numerical simulation study on gas-flow field in two kinds of precalciner with the swirl chamber[J]. Chemical Industry and Engineering, 2014, 31(6): 53-58(in Chinese)
[18] 梅书霞, 谢峻林, 陈晓琳, 等. 涡旋式分解炉中煤及垃圾衍生燃料共燃烧耦合CaCO3分解的数值模拟[J]. 化工学报, 2017, 68(6): 2519-2525 MEI Shuxia, XIE Junlin, CHEN Xiaolin, et al. Numerical simulation of co-combustion of coal and refuse derived fuel in coupling with decomposition of calcium carbonate in precalciner with swirl type prechamber[J]. CIESC Journal, 2017, 68(6): 2519-2525(in Chinese)
[19] SHIH T H, LIOU W W, SHABBIR A, et al. A new k-ε eddy viscosity model for high Reynolds number turbulent flows[J]. Computers & Fluids, 1995, 24(3): 227-238
[20] MAO Y, ZHANG D, CHEN Z, et al. Numerical modelling of multiphase FLOW and calcination process in an industrial calciner with fuel of heavy oil[J]. Powder Technology, 2020, 363: 387-397
[21] YANG Y, ZHANG Y, LI S, et al. Numerical simulation of low nitrogen oxides emissions through cement precalciner structure and parameter optimization[J]. Chemosphere, 2020, 258: 127420
[22] ZHU J, KAO H. Numerical simulation of co-combustion of pulverized coal and different proportions of refused derived fuel in TTF precalciner[J]. Journal of Renewable Materials, 2021, 9(7): 1329-1343
[23] WU C, NANDAKUMAR K, BERROUK A S, et al. Enforcing mass conservation in DPM-CFD models of dense particulate flows[J]. Chemical Engineering Journal, 2011, 174(1): 475-481
[24] MAGNUSSEN B F, HJERTAGER B H. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion[J]. Symposium (International) on Combustion, 1977, 16(1): 719-729
[25] SPALDING D B. Mixing and chemical reaction in steady confined turbulent flames[J]. Symposium (International) on Combustion, 1971, 13(1): 649-657
[26] BADZIOCH S, HAWKSLEY P G W. Kinetics of thermal decomposition of pulverized coal particles[J]. Industrial & Engineering Chemistry Process Design and Development, 1970, 9(4): 521-530
[27] BAUM M M, STREET P J. Predicting the combustion behaviour of coal particles[J]. Combustion Science and Technology, 1971, 3(5): 231-243
[28] FIELD M A. Rate of combustion of size-graded fractions of char from a low-rank coal between 1 200 K and 2 000 K[J]. Combustion and Flame, 1969, 13(3): 237-252
[29] SAZHIN S S, SAZHINA E M, FALTSI-SARAVELOU O, et al. The P-1 model for thermal radiation transfer: Advantages and limitations[J]. Fuel, 1996, 75(3): 289-294
|