[1] KOSTLÁNOVÁ T, DĚDEČEK J, KRTIL P. The effect of the inner particle structure on the electronic structure of the nano-crystalline Li-Ti-O spinels[J]. Electrochimica Acta, 2007, 52(5): 1847-1856 [2] FERG E, GUMMOW R J, DE KOCK A, et al. Spinel anodes for lithium-ion batteries[J]. Journal of the Electrochemical Society, 1994, 141(11): L147-L150 [3] REALE P, PANERO S, SCROSATI B, et al. A safe, low-cost, and sustainable lithium-ion polymer battery[J]. Journal of the Electrochemical Society, 2004, 151(12): A2138 [4] CHRISTENSEN J, SRINIVASAN V, NEWMAN J. Optimization of lithium titanate electrodes for high-power cells[J]. Journal of the Electrochemical Society, 2006, 153(3): A560 [5] LU W, BELHAROUAK I, LIU J, et al. Electrochemical and thermal investigation of Li4/3Ti5/3O4 spinel[J]. Journal of the Electrochemical Society, 2007, 154(2): A114 [6] WILKENING M, AMADE R, IWANIAK W, et al. Ultraslow Li diffusion in spinel-type structured Li4Ti5O12—A comparison of results from solid state NMR and impedance spectroscopy[J]. Physical Chemistry Chemical Physics, 2007, 9(10): 1239-1246 [7] ZHAO L, HU Y, LI H, et al. Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li-ion batteries[J]. Advanced Materials, 2011, 23(11): 1385-1388 [8] MENG W, XU Y, YAN B, et al. Titanium-modified Li4Ti5O12 with a synergistic effect of surface modifying, bulk doping, and size reducing[J]. Ionics, 2018, 24(4): 1019-1027 [9] PENDER J P, JHA G, YOUN D H, et al. Electrode degradation in lithium-ion batteries[J]. ACS Nano, 2020, 14(2): 1243-1295 [10] LIU Y, XIAO R, FANG Y, et al. Three-dimensional oxygen-deficient Li4Ti5O12 nanospheres as high-performance anode for lithium ion batteries[J]. Electrochimica Acta, 2016, 211: 1041-1047 [11] LI L, JIA X, ZHANG Y, et al. Li4Ti5O12 quantum dot decorated carbon frameworks from carbon dots for fast lithium ion storage[J]. Materials Chemistry Frontiers, 2019, 3(9): 1761-1767 [12] ZHU Z, CHENG F, CHEN J. Investigation of effects of carbon coating on the electrochemical performance of Li4Ti5O12/C nanocomposites[J]. Journal of Materials Chemistry A, 2013, 1(33): 9484-9490 [13] SHA Y, XU X, LI L, et al. Hierarchical carbon-coated acanthosphere-like Li4Ti5O12 microspheres for high-power lithium-ion batteries[J]. Journal of Power Sources, 2016, 314: 18-27 [14] ZHAO S, ZHANG M, WANG Z, et al. Enhanced high-rate performance of Li4Ti5O12 microspheres/multiwalled carbon nanotubes composites prepared by electrostatic self-assembly[J]. Electrochimica Acta, 2018, 276: 73-80 [15] REALE P, PANERO S, RONCI F, et al. Iron-substituted lithium titanium spinels: Structural and electrochemical characterization[J]. Chemistry of Materials, 2003, 15(18): 3437-3442 [16] WANG W, JIANG B, XIONG W, et al. A nanoparticle Mg-doped Li4Ti5O12 for high rate lithium-ion batteries[J]. Electrochimica Acta, 2013, 114: 198-204 [17] ZHANG Q, ZHANG C, LI B, et al. Preparation and electrochemical properties of Ca-doped Li4Ti5O12 as anode materials in lithium-ion battery[J]. Electrochimica Acta, 2013, 98: 146-152 [18] YI T, YANG S, LI X, et al. Sub-micrometric Li4-xNaxTi5O12 (0≤x≤0.2) spinel as anode material exhibiting high rate capability[J]. Journal of Power Sources, 2014, 246: 505-511 [19] GUO Q, WANG Q, CHEN G, et al. Molten salt synthesis of transition metal oxides doped Li4Ti5O12 as anode material of Li-ion battery[J]. ECS Transactions, 2016, 72(9): 11-23 [20] FANG G. Electrochemical performances of Li4-xTi5O12 (x=0.02, 0.04, 0.06) as anode materials for lithium ion battery[J]. Advanced Materials Research, 2013, 712:313-316 [21] QI Y, HUANG Y, JIA D, et al. Preparation and characterization of novel spinel Li4Ti5O12-xBrx anode materials[J]. Electrochimica Acta, 2009, 54(21): 4772-4776 [22] HUANG Y, QI Y, JIA D, et al. Synthesis and electrochemical properties of spinel Li4Ti5O12-x[J]. Journal of Solid State Electrochemistry, 2012, 16(5): 2011-2016 [23] HAN D, PAN G, LIU S, et al. PO3-4 doped Li4Ti5O12 hollow microspheres as an anode material for lithium-ion batteries[J]. RSC Advances, 2015, 5(112): 92354-92360 [24] CHEN Y, QIAN C, ZHANG P, et al. Fluoride doping Li4Ti5O12 nanosheets as anode materials for enhanced rate performance of lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2018, 815: 123-129 [25] LI Y, GAO H, YANG W. Enhancements of the structures and electrochemical performances of Li4Ti5O12 electrodes by doping with non-metallic elements[J]. Electrochimica Acta, 2022, 409: 139993 [26] WANG J, ZHAO S, XIE J, et al. Enhanced high-rate performance of Br-doping Li4Ti5O12 microspheres as anode materials for lithium-ion batteries[J]. Journal of Solid State Chemistry, 2021, 303: 122479 [27] ZHANG H. Petal-shaped copper(I) bromide modified copper/graphite as current collector for lithium ion batteries[J]. International Journal of Electrochemical Science, 2022, 17(3): 22037 [28] GAO L, LIU R, HU H, et al. Carbon-decorated Li4Ti5O12/rutile TiO2 mesoporous microspheres with nanostructures as high-performance anode materials in lithium-ion batteries[J]. Nanotechnology, 2014, 25(17): 175402 [29] LIU S, HOU H, HU W, et al. Binder-free integration of insoluble cubic CuCl nanoparticles with a homologous Cu substrate for lithium ion batteries[J]. RSC Advances, 2016, 6(5): 3742-3747 [30] MENG J L, YANG Z, CHEN L, et al. The investigation on the electrochemical performance of CuI as cathode material for zinc storage[J]. Electrochimica Acta, 2020, 338: 135915 [31] DING K, QU R, ZHOU L, et al. Preparation of CuBr nanoparticles on the surface of the commercial copper foil via a soaking method at room temperature: Its unexpected facilitation to the discharge capacity of the commercial graphite electrode[J]. Journal of Electroanalytical Chemistry, 2020, 877: 114626 [32] YAMADA H, MATSUMOTO K, KURATANI K, et al. Preface for the 66th special feature "novel aspects and approaches to experimental methods for electrochemistry"[J]. Electrochemistry, 2022, 90(10): 102000
|