[1] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238: 37-38
[2] Gong J, Lai Y, Lin C. Electrochemically multi-anodized TiO2 nanotube arrays for enhancing hydrogen generation by photoelectrocatalytic water splitting[J]. Electrochimica Acta, 2010, 55(16): 4 776-4 782
[3] Zhang Z, Hossain M, Takahashi T. Photoelectrochemical water splitting on highly smooth and ordered TiO2 nanotube arrays for hydrogen generation[J]. International Journal of Hydrogen Energy, 2010, 35(16): 8 528-8 535
[4] Wolcott A, Smith W A, Kuykendall T R, et al. Photoelectrochemical study of nanostructured ZnO thin films for hydrogen generation from water splitting[J]. Advanced Functional Materials, 2009, 19(12): 1 849-1 856
[5] Cole B, Marsen B, Miller E, et al. Evaluation of nitrogen doping of tungsten oxide for photoelectrochemical water splitting[J]. Journal of Physical Chemistry C, 2008, 112: 5 213-5 220
[6] Mohapatra S K, John S E, Banerjee S, et al. Water photooxidation by smooth and ultrathin α-Fe2O3 nanotube arrays[J]. Chemistry of Materials, 2009, 21(14): 3 048-3 055
[7] Su F, Lu J, Tian Y, et al. Branched TiO2 nanoarrays sensitized with CdS quantum dots for highly efficient photoelectrochemical water splitting[J]. Physical Chemistry Chemical Physics, 2013, 15(29): 12 026-12 032
[8] Su F, Wang T, Lv R, et al. Dendritic Au/TiO2 nanorod arrays for visible-light driven photoelectrochemical water splitting[J]. Nanoscale, 2013, 5(19): 9 001-9 009
[9] Wang M, Sun L, Lin Z, et al. P-n heterojunction photoelectrodes composed of Cu2O-loaded TiO2 nanotube arrays with enhanced photoelectrochemical and photoelectrocatalytic activities[J]. Energy & Environmental Science, 2013, 6(4): 1 211-1 220
[10] Hou Y, Li X, Zou X, et al. Photoeletrocatalytic activity of a Cu2O-loaded self-organized highly oriented TiO2 nanotube array electrode for 4-chlorophenol degradation[J]. Environmental Science & Technology, 2009, 43: 858-863
[11] Santamaria M, Conigliaro G, Di Franco F D, et al. Photoelectrochemical evidence of Cu2O/TiO2 nanotubes hetero-junctions formation and their physicochemical characterization[J]. Electrochimica Acta, 2014, 144: 315-323
[12] Wang J, Ji G, Liu Y, et al. Cu2O/TiO2 heterostructure nanotube arrays prepared by an electrodeposition method exhibiting enhanced photocatalytic activity for CO2 reduction to methanol[J]. Catalysis Communications, 2014, 46: 17-21
[13] Wang D, Yu B, Wang C, et al. A novel protocol toward perfect alignment of anodized TiO2 nanotubes[J]. Advanced Materials, 2009, 21(19): 1 964-1 967
[14] 肖同欣, 吴红军, 高杨, et al. 二次阳极氧化制备TiO2纳米管阵列及光催化性能研究[J]. 化学工程师, 2014, 28(5): 8-10 Xiao Tongxin, Wu Hongjun, Gao Yang, et al. Preparation and photocatalytic research for TiO2 nanotube arrays via two-step anodization[J]. Chemical Engineer, 2014, 28(5): 8-10(in Chinese)
[15] Paracchino A, Brauer J C, Moser J E, et al. Synthesis and characterization of high-photoactivity electrodeposited Cu2O solar absorber by photoelectrochemistry and ultrafast spectroscopy[J]. The Journal of Physical Chemistry C, 2012, 116(13): 7 341-7 350
[16] Xiong L, Huang S, Yang X, et al. P-type and n-type Cu2O semiconductor thin films: Controllable preparation by simple solvothermal method and photoelectrochemical properties[J]. Electrochimica Acta, 2011, 56(6): 2 735-2 739
[17] Lai Y, Sun L, Chen Y, et al. Effects of the structure of TiO2 nanotube array on Ti substrate on its photocatalytic activity[J]. Journal of The Electrochemical Society, 2006, 153(7): 123-127
[18] Li G, Liang W, Xue J, et al. Electrochemical preparation and photoelectric properties of Cu2O-loaded TiO2 nanotube arrays[J]. Journal of Wuhan University of Technology-Materials Science Edition, 2014, 29(1): 23-28
[19] Mahalingam T, Chitra J S P, Rajendran S, et al. Galvanostatic deposition and characterization of cuprous oxide thin films[J]. Journal of Crystal Growth, 2000, 216: 304-310
[20] Mahalingam T, Chitra J S P, Chu J P, et al. Structural and annealing studies of potentiostatically deposited Cu2O thin films[J]. Solar Energy Materials and Solar Cells, 2005, 88(2): 209-216
[21] Johan M R, Suan M S M, Hawar N L, et al. Annealing effects on the properties of copper oxide thin films prepared by chemical deposition[J]. International Journal of Electrochemical Science, 2011, 6: 6 094-6 104
[22] Li G, Dimitrijevic N M, Chen L, et al. Role of surface/interfacial Cu2+ sites in the photocatalytic activity of coupled CuO-TiO2 nanocomposites[J]. Journal of Physical Chemistry C, 2008, 112: 19 040-19 044
[23] 李国强, 于涛, 邹志刚. P-N半导体复合型光电极分解水的原理及应用[J]. 前沿进展, 2006, 35(3): 251-255 Li Guoqiang, Yu Tao, Zou Zhigang. Principles and application of P-N semiconductor composites as photoelectrodes for water splitting[J]. Frontier of Discipline, 2006, 35(3): 251-255(in Chinese)
[24] 张煜,刘兆阅,翟锦, 等. Cu2O/TiO2纳米管阵列异质结的制备及其可见光光电响应性质[J]. 化学学报,2013, 71 (5): 793-797 Zhang Yi, Liu Zhaoyue, Zhai Jin, et al. Preparation of Cu2O/TiO2 nanotube arrays heterojunction and their photoelectrochemical response in visible light[J]. Acta Chimica Sinica, 2013, 71(5):793-797
|