[an error occurred while processing this directive]
化学工业与工程
 首页 |  在线投稿 |  期刊介绍 |  编 委 会 |  投稿指南 |  期刊订阅 |  下载中心 |  出版伦理 |  联系我们 |  English
化学工业与工程 2024, Vol. 41 Issue (3) :142-153    DOI: 10.13353/j.issn.1004.9533.20230129
化工模拟与计算 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << | >>
小样本下基于领域自适应的间歇过程质量预测
范振杰, 罗娜
华东理工大学能源化工过程智能制造教育部重点实验室, 上海 200237
Quality prediction of batch process based on domain adaptation under few shot
FAN Zhenjie, LUO Na
Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China

摘要
参考文献
相关文章
Download: PDF (5108KB)   HTML ()   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 针对间歇过程因样本量不足导致预测精度低的问题,提出一种基于领域自适应的间歇过程质量预测模型方法。首先,引入空间注意力机制自适应地增强与质量指标相关性高的输入变量,结合一维卷积层和长短期记忆网络单元分别挖掘数据的空间特征和时间特征。其次,将领域自适应方法引入到建模过程中,进行目标域数据和源域数据之间特征的自适应匹配,降低2个数据集因分布差异对模型预测精度的影响。该方法在慢时变的青霉素生产过程仿真数据集和酚醛树脂工业生产过程进行了验证。实验结果表明,所提出的模型能有效地提高小样本下间歇过程质量预测的精度。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
范振杰
罗娜
关键词间歇过程   小样本   领域自适应     
Abstract: In batch process modeling, only few samples are collected which is not enough to develop high accurate model. To solve this problem, a model based on domain adaptation under small sample was proposed. Spatial attention mechanism was introduced to the model first in order to enhance input variables with high correlation to quality index. After that, one-dimension convolutional layer and long and short term memory units was also borrowed to mine spatial and temporal characteristics of data, respectively. Secondly, the domain adaptation method was introduced into the modeling process to perform adaptive matching of features between the target domain data and the source domain data to reduce the impact of the difference in distribution of the two data sets on the prediction accuracy of the model. The method was validated on the slowly time-varying penicillin production process simulation data set and the phenolic resin industrial production process. Experimental results showed that the proposed model can effectively improve the accuracy of batch process quality prediction under few shot.
Keywordsbatch process   few shot   domain adaptation     
Received 2023-03-07;
Fund:杭州市萧山区2022年高层次人才创业创新"5213"计划项目。
Corresponding Authors: 罗娜,副研究员,E-mail:naluo@ecust.edu.cn。     Email: naluo@ecust.edu.cn
About author: 范振杰(1995-),男,硕士研究生,现从事基于深度学习的工业过程建模方面的研究。
引用本文:   
范振杰, 罗娜.小样本下基于领域自适应的间歇过程质量预测[J].  化学工业与工程, 2024,41(3): 142-153
FAN Zhenjie, LUO Na.Quality prediction of batch process based on domain adaptation under few shot[J].  Chemcial Industry and Engineering, 2024,41(3): 142-153
Copyright 2010 by 化学工业与工程