[1] Patil A, Patil V, Shin D W, et al. Issue and challenges facing rechargeable thin film lithium batteries[J]. Materials Research Bulletin, 2008, 43(8):1913-1942
[2] 陈宏珍, 刘仲明, 兰晓平, 等. 锂离子电池组翅片-空气协同冷却的数值模拟[J]. 化学工业与工程2016,33(4):42-48 Chen Hongzhen, Liu Zhongming, Lan Xiaoping, et al. Numerical simulation of lithium ion battery pack cooling with fin and air[J]. Chemcial Industry and Engineering 2016,33(4):42-48(in Chinese)
[3] Chen J. Recent progress in advanced materials for lithium ion batteries[J]. Materials, 2013, 6(1):156-183
[4] Teki R, Datta M K, Krishnan R, et al. Nanostructured silicon anodes for lithium ion rechargeable batteries[J]. Small, 2009, 5(20):2236-2242
[5] Wu H, Cui Y. Designing nanostructured Si anodes for high energy lithium ion batteries[J]. Nano Today, 2012, 7(5):414-429
[6] 冯明燕, 田建华, 刘园园, 等. 硅负极添加剂对锂离子电池的影响[J]. 无机材料学报, 2015, 30(6):647-652 Feng M Y, Tian J H, Liu Y Y, et al. Effect of silicon anode additives on lithium ion batteries[J]. Journal of Inorganic Materials, 2015, 30(6):647-652(in Chinese)
[7] Kim J S, Byun D, Lee J K. Electrochemical characteristics of amorphous silicon thin film electrode with fluoroethylene carbonate additive[J]. Current Applied Physics, 2014, 14(4):596-602
[8] Feng M, Tian J, Xie H, et al. Nano silicon/polyaniline composites with an enhanced reversible capacity as anode materials for lithium ion batteries[J]. Journal of Solid State Electrochemistry, 2015, 19(6):1773-1782
[9] Zhou X, Tang J, Yang J, et al. Silicon@carbon hollow core-shell heterostructures novel anode materials for lithium ion batteries[J]. Electrochimica Acta, 2013, 87:663-668
[10] Jung Y, Lee K T, Oh S M. Si-Carbon core-shell composite anode in lithium secondary batteries[J]. Electrochimica Acta, 2007, 52(24):7061-7067
[11] Zuo P, Yin G, Yang Z, et al. Improvement of cycle performance for silicon/carbon composite used as anode for lithium ion batteries[J]. Materials Chemistry and Physics, 2009, 115(2):757-760
[12] Guo Z, Milin E, Wang J, et al. Silicon/disordered carbon nanocomposites for lithium-ion battery anodes[J]. Journal of the Electrochemical Society, 2005, 152(11):A2211-A2216
[13] Liu N, Wu H, McDowell M T, et al. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes[J]. Nano Letters, 2012, 12(6):3315-3321
[14] Maiyalagan T, Viswanathan B. Template synthesis and characterization of well-aligned nitrogen containing carbon nanotubes[J]. Materials Chemistry and Physics, 2005, 93(2):291-295
[15] Bousetta A, Lu M, Bensaoula A, et al. Formation of carbon nitride films on Si (100) substrates by electron cyclotron resonance plasma assisted vapor deposition[J]. Applied Physics Letters, 1994, 65(6):696-698
[16] Lota G, Grzyb B, Machnikowska H, et al. Effect of nitrogen in carbon electrode on the supercapacitor performance[J]. Chemical Physics Letters, 2005, 404(1):53-58
[17] Lin F, Nordlund D, Weng T, et al. Phase evolution for conversion reaction electrodes in lithium-ion batteries[J]. Nature Communications, 2014, 5(2):163-180
[18] Hwa Y, Kim W S, Hong S, et al. High capacity and rate capability of core-shell structured nano-Si/C anode for Li-ion batteries[J]. Electrochimica Acta, 2012, 71:201-205
[19] Tao H, Huang M, Fan L, et al. Effect of nitrogen on the electrochemical performance of core-shell structured Si/C nanocomposites as anode materials for Li-ion batteries[J]. Electrochimica Acta, 2013, 89:394-399
|