[an error occurred while processing this directive]
化学工业与工程
 首页 |  在线投稿 |  期刊介绍 |  编 委 会 |  投稿指南 |  期刊订阅 |  下载中心 |  出版伦理 |  联系我们 |  English
化学工业与工程 2022, Vol. 39 Issue (4) :9-21    DOI: 10.13353/j.issn.1004.9533.20210337
化学反应与工艺 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << | >>
稳定的钌基离子液体催化液相乙炔氢氯化
姚世康, 张旭斌, 王富民, 任雁飞
天津大学化工学院, 天津 300350
A stable Ru-based ionic liquid as a catalyst for hydrochlorination of acetylene in liquid phase
YAO Shikang, ZHANG Xubin, WANG Fumin, REN Yanfei
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China

摘要
参考文献
相关文章
Download: PDF (12513KB)   HTML ()   Export: BibTeX or EndNote (RIS)      Supporting Info
文章导读  
摘要 为了有效提高液相乙炔氢氯化反应的催化活性和催化稳定性,制备了一种新型钌(Ru)基离子液体,作为该反应液相体系的催化剂,考察了离子液体中阳离子的种类对催化活性的影响,筛选出一种活性最佳阳离子对应的盐酸盐,通过使用N-甲基吡咯烷酮和HCl一步制得[Hnmpo]Cl。随后对[Hnmpo]Cl-RuCl3催化反应的工艺条件进行优化,筛选出最适宜反应条件为:反应温度170℃,乙炔空速50 h-1,进料比V(HCl)/V(C2H2)=1.15,反应前通HCl活化时长为30 min,乙炔转化率可达89.6%,氯乙烯选择性超过99.5%,并且反应140 h之内均无下降趋势。通过TGA、FTIR、ESI-MS和XPS等表征和理论计算,证实该离子液体的阴阳离子间存在较强的相互作用,并确认了其具体存在形式,反应过程积碳量仅为0.51%,体现出较强的稳定性。随后制备了(0.007 5 mol·L-1)RuCl3-(0.022 5 mol·L-1)SnCl2/[Hnmpo]Cl双金属离子液体催化剂,在同样的最适宜反应条件下,进行了寿命测试,结果显示反应700 h,乙炔转化率仍在96.1%以上。通过ICP-OES、XPS和UV-Vis等表征和理论计算,发现活性物种Ru在反应前后几乎无任何损失,发现体系内高价态的Run+(3≤n≤4)含量保持较高水平是决定催化稳定性的关键。计算表明,SnCl2的引入给Ru提供了新的Cl原子配位,增强了离子液体对HCl的吸附和活化能力,稳定了Ru的价态,防止活性位C2H2过量引起还原失活,因此双金属离子液体有着更优异的催化活性和稳定性,并根据DFT计算提出了循环催化反应机理。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
姚世康
张旭斌
王富民
任雁飞
关键词离子液体   无汞催化剂   双金属催化剂   液相体系     
Abstract: In order to improve the catalytic activity and stability of liquid-phase acetylene hydrochlorination, a novel ruthenium(Ru) based ionic liquid was prepared as a catalyst for the liquid-phase reaction. We have studied the effects of types of ionic liquids on the catalytic activity and a kind of hydrochloride with the best activity was selected, which was prepared using N-methylpyrrolidone and HCl in one step [Hnmpo]Cl. The [Hnmpo]Cl-RuCl3 was prepared and the optimized reaction conditions were that reaction temperature is 170 ℃, a gaseous space velocity(GHSV) of acetylene at 50 h-1, V(HCl)/V(C2H2)=1.15 in feed, and the activation time of filling with HCl is half an hour before reaction. The conversion of acetylene was 89.6% and the selectivity of vinyl chloride was over 99.5% within 140 hours. Through characterization and theoretical calculations by TGA, FTIR, ESI-MS, XPS, it was confirmed that there was a strong interaction between the cation and anion of the ionic liquid, and its specific form of existence was confirmed. The amount of carbon deposition in the reaction process was only 0.51%, which showed a strong stability. The RuCl3(0.007 5 mol·L-1)-SnCl2(0.022 5 mol·L-1)/[Hnmpo]Cl was prepared. At the same reaction conditions, the life tests showed that the conversion of acetylene remained above 96.1% after 700 hours of reaction time. Through analysis and theoretical calculations by ICP-OES, XPS UV-Vis, it was found that the active species Ru had almost no loss before and after the reaction and the key to determine the catalytic stability was to keep the content of high valence Run+(3≤n≤4) at a high level. According to the theoretical calculations, it was found that the introduction of SnCl2 provided new Cl atom coordination for Ru, enhancing the adsorption and activation ability of ionic liquid catalyst for HCl. The valence state of Ru species was stabilized and the reduction deactivation caused by excessive C2H2 was prevented. Therefore, the bimetallic ionic liquid had more excellent catalytic activity and stability. And the mechanism of cyclic catalytic reaction was proposed.
Keywordsionic liquid   non-mercury catalyst   bimetallic catalyst   liquid phase     
Received 2021-04-06;
Fund
Corresponding Authors: 张旭斌,副教授,E-mail:tjzxb@tju.edu.cn。     Email: tjzxb@tju.edu.cn
About author: 姚世康(1996-),男,硕士研究生,现从事工业催化的研究方面的研究。
引用本文:   
姚世康, 张旭斌, 王富民, 任雁飞.稳定的钌基离子液体催化液相乙炔氢氯化[J].  化学工业与工程, 2022,39(4): 9-21
YAO Shikang, ZHANG Xubin, WANG Fumin, REN Yanfei.A stable Ru-based ionic liquid as a catalyst for hydrochlorination of acetylene in liquid phase[J].  Chemcial Industry and Engineering, 2022,39(4): 9-21
Copyright 2010 by 化学工业与工程