[1] Fino D, Bensaid S, Piumetti M, et al. A review on the catalytic combustion of soot in diesel particulate filters for automotive applications:From powder catalysts to structured reactors[J]. Applied Catalysis A:General, 2016, 509:75-96
[2] Biamino S, Fino P, Fino D, et al. Catalyzed traps for diesel soot abatement:In situ processing and deposition of perovskite catalyst[J]. Applied Catalysis B:Environmental, 2005, 61(3/4):297-305
[3] Mori K, Iwata Y, Yamamoto M, et al. An efficient Cu/BaO/La2O3 catalyst for the simultaneous removal of carbon soot and nitrogen oxides from simulated diesel exhaust[J]. Journal of Physical Chemistry C, 2014, 118(17):9078-9085
[4] Fino D, Russo N, Saracco G, et al. The role of suprafacial oxygen in some perovskites for the catalytic combustion of soot[J]. Journal of Catalysis, 2003, 217(2):367-375
[5] 祝杰, 刘艳春, 曾令可, 等. 稀土钙钛矿型复合氧化物汽车尾气处理催化剂研究现状[J]. 工业催化, 2010, 18(3):17-21 Zhu Jie, Liu Yanchun, Zeng Lingke, et al. Researches in rare earth perovskite-type oxides catalysts for automotive exhaust treatment[J]. Industrial Catalysis, 2010, 18(3):17-21(in Chinese)
[6] Durán F G, Barbero B P, Cadús L E, et al. Manganese and iron oxides as combustion catalysts of volatile organic compounds[J]. Applied Catalysis B:Environmental, 2009, 92(1/2):194-201
[7] Takaya S, Lu Y, Guan S, et al. Fabrication of the photocatalyst thin films of nano-structured potassium titanate by molten salt treatment and its photocatalytic activity[J]. Surface and Coatings Technology, 2015, 275:260-263
[8] Shinde V M, Madras G. Catalytic performance of highly dispersed Ni/TiO2 for dry and steam reforming of methane[J]. RSC Advances, 2014, 4(10):4817-4826
[9] Coelho D C, Oliveira A C, Filho J M, et al. Effect of the active metal on the catalytic activity of the titanate nanotubes for dry reforming of methane[J]. Chemical Engineering Journal, 2016, 290:438-453
[10] Han W, Tang Z, Zhang P, et al. Fabrication and catalytic properties of Pd and Ce decorated carbon nanotube-TiO2 composite catalysts for low-temperature CO oxidation[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2014, 460:422-428
[11] González E A Z, García-Guaderrama M, Villalobos M R, et al. Potassium titanate as heterogeneous catalyst for methyl transesterification[J]. Powder Technology, 2015, 280:201-206
[12] Salinas D, Guerrero S, Cross A, et al. Potassium titanate for the production of biodiesel[J]. Fuel, 2016, 166:237-244
[13] Zhang Y, Meng M, Dai F, et al. States and function of potassium carbonate species in the polytitanate nanobelt supported catalysts used for efficient NOx storage and reduction[J]. The Journal of Physical Chemistry C, 2013, 117(45):23691-23700
[14] Gálvez M E, Ascaso S, Stelmachowski P, et al. Influence of the surface potassium species in Fe-K/Al2O3 catalysts on the soot oxidation activity in the presence of NOx[J]. Applied Catalysis B:Environmental, 2014, 152/153:88-98
[15] Ura B, Trawczyński J, Kotarba A, et al. Effect of potassium addition on catalytic activity of SrTiO3 catalyst for diesel soot combustion[J]. Applied Catalysis B:Environmental, 2011, 101(3/4):169-175
[16] Li Q, Wang X, Xin Y, et al. A unified intermediate and mechanism for soot combustion on potassium-supported oxides[J]. Scientific reports, 2014, 4, 4725-4730
[17] Li Q, Meng M, Dai F, et al. Multifunctional hydrotalcite-derived K/MnMgAlO catalysts used for soot combustion, NOx storage and simultaneous soot-NOx removal[J]. Chemical Engineering Journal, 2012, 184:106-112
[18] Li Q, Meng M, Zou Z, et al. Simultaneous soot combustion and nitrogen oxides storage on potassium-promoted hydrotalcite-based CoMgAlO catalysts[J]. Journal of Hazardous materials, 2009, 161(1):366-372
[19] 景潇潇. 钛酸盐纳米纤维的形貌控制及其固体碱催化性能研究[D]. 上海:上海交通大学, 2013 Jing Xiaoxiao. Morphology control in synthesis of the titanate nanofiber and its application as a solid base catalyst[D]. Shanghai:Shanghai Jiaotong University, 2013(in Chinese)
[20] Li Q, Wang X, Chen H, et al. K-Supported catalysts for diesel soot combustion:Making a balance between activity and stability[J]. Catalysis Today, 2016, 264:171-179
[21] https://srdata.nist.gov/xps
[22] Kang M, Park E D, Kim J M, et al. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures[J]. Applied Catalysis A:General, 2007, 327(2):261-269
[23] Liu J, Zhao Z, Wang J, et al. The highly active catalysts of nanometric CeO2-supported cobal oxides for soot combustion[J]. Applied Catalysis B:Environmental, 2008, 84(1/2):185-195
[24] Ramírez J, Gutiérrez-Alejandre A. Relationship between hydrodesulfurization activity and morphological and structural changes in NiW hydrotreating catalysts supported on Al2O3-TiO2 mixed oxides[J]. Catalysis Today, 1998, 43(1/2):123-133
[25] Morgado E J, Zotin J L, deAbreu M A S, et al. Characterization and hydrotreating performance of NiMo catalysts supported on nanostructured titanate[J]. Applied Catalysis A:General, 2009, 357(2):142-149
[26] Kapteijn F, Singoredjo L, Andreini A, et al. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia[J]. Applied Catalysis B:Environmental, 1994, 3(2/3):173-189
[27] Zhang Y, Liu D, Meng M, et al. A highly active and stable non-platinic lean NOx trap catalyst MnOx-K2CO3/K2Ti8O17 with ultra-low NOx to N2O selectivity[J]. Industrial & Engineering Chemistry Research, 2014, 53(20):8416-8425
[28] Guo X, Meng M, Dai F, et al. NOx-assisted soot combustion over dually substituted perovskite catalysts La1-xKxCo1-yPdyO3-δ[J]. Applied Catalysis B:Environmental, 2013, 142/143:278-289
[29] 代方方. 用于柴油车尾气催化净化的Co、Mn基氧化物催化剂研究[D]. 天津:天津大学, 2014 Dai Fangfang. Study on the Co-and Mn-based oxides catalysts used for catalytic purification of the exhausts from diesel vehicles[D]. Tianjin:Tianjin University, 2014(in Chinese)
[30] López-Suárez F E, Bueno-López A, Illán-Gómez M J, et al. Potassium-Copper perovskite catalysts for mild temperature diesel soot combustion[J]. Applied Catalysis A:General, 2014, 485:214-221
[31] Jimenez R, Garcia X, Cellier C, et al. Soot combustion with K/MgO as catalyst[J]. Applied Catalysis A:General, 2006, 297(2):125-134
|