[1] Yasuhara A, Morita M. Formation of chlorinated compounds in pyrolysis of trichloroethylene[J]. Chemosphere, 1990, 21(4/5): 479-486
[2] Couté N, Richardson J T. Steam reforming of chlorocarbons: Chlorinated aromatics[J]. Applied Catalysis B-Environmental, 2000, 26(3): 217-226
[3] Chen N, Rioux R M, Ribeiro F H. Investigation of reaction steps for the hydrodechlorination of chlorine-containing organic compounds on Pd catalysts [J]. Journal of Catalysis, 2002, 211(1): 192-197
[4] Cardona A I, Candal R, Sánchez B, et al. TiO2 on magnesium silicate monolith: Effects of different preparation techniques on the photocatalytic oxidation of chlorinated hydrocarbons[J]. Energy, 2004, 29(5/6): 845-852
[5] Aranzabal A, Pereda-Ayo B, González-Marcos M P, et al. State of the art in catalytic oxidation of chlorinated volatile organic compounds [J]. Chemical Papers, 2014, 68(9): 1 169-1 186
[6] Huang H, Dai Q, Wang X. Morphology effect of Ru/CeO2 catalysts for the catalytic combustion of chlorobenzene[J]. Applied Catalysis B-Environmental, 2014, 158/159: 96-105
[7] Matejova L, Topka P, Kaluza L, et al. Total oxidation of dichloromethane and ethanol over ceria-zirconia mixed oxide supported platinum and gold catalysts[J]. Applied Catalysis B-Environmental, 2013, 142: 54-64
[8] Pitkaaho S, Nevanpera T, Matejova L, et al. Oxidation of dichloromethane over Pt, Pd, Rh, and V2O5 catalysts supported on Al2O3, Al2O3-TiO2 and Al2O3-CeO2 [J]. Applied Catalysis B-Environmental, 2013, 138: 33-42
[9] Pitkaaho S, Matejova L, Jiratova K, et al. Oxidation of perchloroethylene-activity and selectivity of Pt, Pd, Rh, and V2O5 catalysts supported on Al2O3, Al2O3-TiO2 and Al2O3-CeO2[J]. Applied Catalysis B-Environmental, 2012, 126: 215-224
[10] Pitkaho S, Ojala S, Maunula T, et al. Oxidation of dichloromethane and perchloroethylene as single compounds and in mixtures [J]. Applied Catalysis B-Environmental, 2011, 102(3/4): 395-403
[11] Giraudon J M, Elhachimi A, Leclercq G. Catalytic oxidation of chlorobenzene over Pd/perovskites[J]. Applied Catalysis B-Environmental, 2008, 84(1/2): 251-261
[12] Scire S, Minico S, Crisafulli C. Pt catalysts supported on H-type zeolites for the catalytic combustion of chlorobenzene[J]. Applied Catalysis B-Environmental, 2003, 45(2): 117-125
[13] Gonzalez-Velasco J R, Aranzabal A, Gutierrez-Ortiz J I, et al. Activity and product distribution of alumina supported platinum and palladium catalysts in the gas-phase oxidative decomposition of chlorinated hydrocarbons[J]. Applied Catalysis B-Environmental, 1998, 19(3/4): 189-197
[14] Lopez-Forlseca R, Gutierrez-Ortiz J I, Gonzalez-Velasco J R. Catalytic combustion of chlorinated hydrocarbons over H-BETA and PdO/H-BETA zeolite catalysts [J]. Applied Catalysis A-General, 2004, 271(1/2): 39-46
[15] Wang Y, Jia A, Luo M, et al. Highly active spinel type CoCr2O4 catalysts for dichloromethane oxidation [J]. Applied Catalysis B-Environmental, 2015, 165: 477-486
[16] Yang P, Yang S, Shi Z, et al. Deep oxidation of chlorinated VOCs over CeO2-based transition metal mixed oxide catalysts [J]. Applied Catalysis B-Environmental, 2015, 162: 227-235
[17] Yang P, Meng Z, Yang S, et al. Highly active behaviors of CeO2-CrOx mixed oxide catalysts in deep oxidation of 1,2-dichloroethane [J]. Journal of Molecular Catalysis A-Chemical, 2014, 393: 75-83
[18] Zhao P, Wang C, He F, et al. Effect of ceria morphology on the activity of MnOx/CeO2 catalysts for the catalytic combustion of chlorobenzene [J]. RSC Advances, 2014, 4(86): 45 665-45 672
[19] Dai Y, Wang X, Dai Q, et al. Effect of Ce and La on the structure and activity of MnOx catalyst in catalytic combustion of chlorobenzene [J]. Applied Catalysis B-Environmental, 2012, 111: 141-149
[20] de Rivas B, Lopez-Fonseca R, Jimenez-Gonzalez C, et al. Synthesis, characterisation and catalytic performance of nanocrystalline Co3O4 for gas-phase chlorinated VOC abatement[J]. Journal of Catalysis, 2011, 281(1): 88-97
[21] Tian W, Fan X, Yang H, et al. Preparation of MnOx/TiO2 composites and their properties for catalytic oxidation of chlorobenzene [J]. Journal of Hazardous Materials, 2010, 177(1/3): 887-891
[22] Tseng T K, Wang L, Ho C T, et al. The destruction of dichloroethane over a gamma-alumina supported manganese oxide catalyst [J]. Journal of Hazardous Materials, 2010, 178(1/3): 1 035-1 040
[23] Vu V H, Belkouch J, Ould-Dris A, et al. Removal of hazardous chlorinated VOCs over Mn-Cu mixed oxide based catalyst[J]. Journal of Hazardous Materials, 2009, 169(1/3): 758-765
[24] Wang X, Kang Q, Li D. Catalytic combustion of chlorobenzene over MnOx-CeO2 mixed oxide catalysts [J]. Applied Catalysis B-Environmental, 2009, 86(3/4): 166-175
[25] de Rivas B, Lopez-Fonseca R, Sampedro C, et al. Catalytic behaviour of thermally aged Ce/Zr mixed oxides for the purification of chlorinated VOC-containing gas streams [J]. Applied Catalysis B-Environmental, 2009, 90(3/4): 545-555
[26] Dai Q, Wang X, Lu G. Low-Temperature catalytic combustion of trichloroethylene over cerium oxide and catalyst deactivation[J]. Applied Catalysis B-Environmental, 2008, 81(3/4): 192-202
[27] De Rivas B, Lopez-Fonseca R, Gutierrez-Ortiz M A, et al. Catalytic performance of chlorinated Ce/Zr mixed oxides for Cl-VOC oxidation[J]. WIT Transactions on Ecology and the Environment, 109, 857-866. DOI: 10.2495/wm080871
[28] Dai Q, Wang X, Lu G. Low-Temperature catalytic destruction of chlorinated VOCs over cerium oxide [J]. Catalysis Communications, 2007, 8(11): 1 645-1 649
[29] Debecker D P, Bertinchamps F, Blangenois N, et al. On the impact of the choice of model VOC in the evaluation of V-based catalysts for the total oxidation of dioxins: Furan vs. chlorobenzene [J]. Applied Catalysis B-Environmental, 2007, 74(3/4): 223-232
[30] Dobber D, Kiessling D, Schmitz W, et al. MnOx/ZrO2 catalysts for the total oxidation of methane and chloromethane [J]. Applied Catalysis B-Environmental, 2004, 52(2): 135-143
[31] Finocchio E, Ramis G, Busca G. A study on catalytic combustion of chlorobenzenes [J]. Catalysis Today, 2011, 169(1): 3-9
[32] Lu Y, Dai Q, Wang X. Catalytic combustion of chlorobenzene on modified LaMnO3 catalysts[J]. Catalysis Communications, 2014, 54: 114-117
[33] Chen S, Wang Y, Jia A, et al. Enhanced activity for catalytic oxidation of 1,2-dichloroethane over Al-substituted LaMnO3 perovskite catalysts [J]. Applied Surface Science, 2014, 307: 178-188
[34] Zhang C, Wang C, Zhan W, et al. Catalytic oxidation of vinyl chloride emission over LaMnO3 and LaB0.2Mn0.8O3 (B=Co, Ni, Fe) catalysts [J]. Applied Catalysis B-Environmental, 2013, 129: 509-516
[35] 沈柳倩, 翁芳蕾, 袁鹏军, 等. 钙钛矿型催化剂对VOCs催化燃烧的抗毒性和稳定性研究 [J]. 分子催化, 2008, 22(4): 320-324 Shen Liuqian, Weng Fanglei, Yuan Pengjun, et al. Research on the poison resistance and stabilization of the perovskite catalysts for VOCs catalytic combustion [J]. Journal of Molecular Catalysis (China), 2008, 22(4): 320-324(in Chinese)
[36] Sinquin G, Petit C, Libs S, et al. Catalytic destruction of chlorinated C-2 compounds on a LaMnO3+delta perovskite catalyst [J]. Applied Catalysis B-Environmental, 2001, 32(1/2): 37-47
[37] Poplawski K, Lichtenberger J, Keil F J, et al. Catalytic oxidation of 1,2-dichlorobenzene over ABO3-type perovskites [J]. Catalysis Today, 2000, 62(4): 329-336
[38] Stephan K, Hackenberger M, Kiessling D, et al. Supported perovskite-type oxide catalysts for the total oxidation of chlorinated hydrocarbons[J]. Catalysis Today, 1999, 54(1): 23-30
[39] Najjar H, Batis H. La-Mn perovskite-type oxide prepared by combustion method: Catalytic activity in ethanol oxidation [J]. Applied Catalysis A-General, 2010, 383(1/2): 192-201
[40] Abdullah A Z, Abu Bakar M Z, Bhatia S. Combustion of chlorinated volatile organic compounds (VOCs) using bimetallic chromium-copper supported on modified H-ZSM-5 catalyst [J]. Journal of Hazardous Materials, 2006, 129(1/3): 39-49
[41] Kulazynski M, van Ommen J G, Trawczynski J, et al. Catalytic combustion of trichloroethylene over TiO2-SiO2 supported catalysts [J]. Applied Catalysis B-Environmental, 2002, 36(3): 239-247
[42] Rachapudi R, Chintawar P S, Greene H L. Aging and structure activity characteristics of CR-ZSM-5 catalysts during exposure to chlorinated VOCs [J]. Journal of Catalysis, 1999, 185(1): 58-72
[43] Kiessling D, Schneider R, Kraak P, et al. Perovskite-type oxides catalysts for the total oxidation of chlorinated hydrocarbons [J]. Applied Catalysis B-Environmental, 1998, 19(2): 143-151
[44] Guillemot M, Mijoin J, Mignard S, et al. Mode of zeolite catalysts deactivation during chlorinated VOCs oxidation [J]. Applied Catalysis A-General, 2007, 327(2): 211-217
[45] Aranzabal A, Gonzalez-Marcos J A, Romero-Saez A, et al. Stability of protonic zeolites in the catalytic oxidation of chlorinated VOCs (1,2-dichloroethane) [J]. Applied Catalysis B-Environmental, 2009, 88(3/4): 533-541
[46] Miranda B, Diaz E, Ordonez S, et al. Performance of alumina-supported noble metal catalysts for the combustion of trichloroethene at dry and wet conditions [J]. Applied Catalysis B-Environmental, 2006, 64(3/4): 262-271
[47] Guisnet M, Magnoux P. Fundamental description of deactivation and regeneration of acid zeolites[C]//Delmon B, Froment G F: Catalyst Deactivation, 1994, 88: 53-68
[48] Aranzabal A, Romero-Saez M, Elizundia U, et al. Deactivation of H-zeolites during catalytic oxidation of trichloroethylene [J]. Journal of Catalysis, 2012, 296: 165-174
[49] Gallastegi-Villa M, Romero-Saez M, Aranzabal A, et al. Strategies to enhance the stability of H-beat zeolite in the catalytic oxidation of Cl-VOCs: 1,2-Dichloroethane [J]. Catalysis Today, 2013, 213: 192-197
|